求证:a≤几何平均数,几何平均数≤算术平均数,求解
1个回答
展开全部
a≤调和平均数≤几何平均数≤算术平均数≤平方平均数≤b
二元的易证,多元的就有点麻烦了。下面给二元的证明,多元的找本竞赛书看吧。
以下设a、b均为正数(这是为了避免分母为0的情况,否则对一些式子非负数也成立)。
基础的,几何和算术:因(a
-
b)^2
>=
0,即(a
+
b)^2
-
4ab
>=
0,故a
+
b
>=
√(4ab)
=
2√(ab).
调和与几何:利用上式,有1
/
(1/a
+
1/b)
=
ab/(a+b)
<=
ab
/
2√(ab).
算术与平方:因(a^2
+
b^2)
/
2
-
(a/2
+
b/2)^2
=
(a
-
b)^2
/
4
>=
0,故√((a^2
+
b^2)
/
2)
>=
(a
+
b)/2.
n元的情况,几何与算术可以用归纳法来证,有一点小技巧;也可以做为其他一些不等式的推论,如排序不等式、cauchy不等式,jensen不等式等。另几个也是类似的。其中jensen不等式是关于凸函数性质的,证明要用到高等数学,不过比较广泛,上面的几个不等式好像都可以用它推出来。要看初等的证明方法还是看竞赛书吧
调和:2
/
(1/a
+
1/b)
=
2ab/(a+b)
2ab/(a+b)
和a同乘a+b
然后可以得到
a^2+ab<2ab
所以a≤调和平均数
平方平均数≤b
两边同平方
(a^2+b^2)/2
b^2
同乘以2
a^2+b^2<2b^2
所以平方平均数≤b
二元的易证,多元的就有点麻烦了。下面给二元的证明,多元的找本竞赛书看吧。
以下设a、b均为正数(这是为了避免分母为0的情况,否则对一些式子非负数也成立)。
基础的,几何和算术:因(a
-
b)^2
>=
0,即(a
+
b)^2
-
4ab
>=
0,故a
+
b
>=
√(4ab)
=
2√(ab).
调和与几何:利用上式,有1
/
(1/a
+
1/b)
=
ab/(a+b)
<=
ab
/
2√(ab).
算术与平方:因(a^2
+
b^2)
/
2
-
(a/2
+
b/2)^2
=
(a
-
b)^2
/
4
>=
0,故√((a^2
+
b^2)
/
2)
>=
(a
+
b)/2.
n元的情况,几何与算术可以用归纳法来证,有一点小技巧;也可以做为其他一些不等式的推论,如排序不等式、cauchy不等式,jensen不等式等。另几个也是类似的。其中jensen不等式是关于凸函数性质的,证明要用到高等数学,不过比较广泛,上面的几个不等式好像都可以用它推出来。要看初等的证明方法还是看竞赛书吧
调和:2
/
(1/a
+
1/b)
=
2ab/(a+b)
2ab/(a+b)
和a同乘a+b
然后可以得到
a^2+ab<2ab
所以a≤调和平均数
平方平均数≤b
两边同平方
(a^2+b^2)/2
b^2
同乘以2
a^2+b^2<2b^2
所以平方平均数≤b
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询