
当x趋近于0时,(((1+sinx^2)^1/3)-1)÷(arcsinx^2)的极限?
展开全部
x->0
分子
sin(x^2)= x^2 +o(x^2)
[1+sin(x^2)]^(1/3)
= [1+x^2 +o(x^2) ]^(1/3)
=1 +(1/3)x^2 +o(x^2)
[1+sin(x^2)]^(1/3) -1 =(1/3)x^2 +o(x^2)
分母
arcsin(x^2)=x^2 +o(x^2)
lim(x->0) { [1+sin(x^2)]^(1/3) -1 }/arcsin(x^2)
=lim(x->0) (1/3)x^2/x^2
=1/3
分子
sin(x^2)= x^2 +o(x^2)
[1+sin(x^2)]^(1/3)
= [1+x^2 +o(x^2) ]^(1/3)
=1 +(1/3)x^2 +o(x^2)
[1+sin(x^2)]^(1/3) -1 =(1/3)x^2 +o(x^2)
分母
arcsin(x^2)=x^2 +o(x^2)
lim(x->0) { [1+sin(x^2)]^(1/3) -1 }/arcsin(x^2)
=lim(x->0) (1/3)x^2/x^2
=1/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询