设F1 F2分别为椭圆C:x^2/a^2+y^2/b^2=1 (a>b>0)的左右两个焦点

设F1F2分别为椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的左右两个焦点(1)若椭圆C上的点A(1,3/2)到F1F2两点距离之和为4写出C的方程和焦点坐标... 设F1 F2分别为椭圆C:x^2/a^2+y^2/b^2=1 (a>b>0)的左右两个焦点
(1) 若椭圆C上的点A(1,3/2)到F1 F2两点距离之和为4 写出C的方程和焦点坐标
(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程
展开
百度网友d04711f
2012-11-15 · TA获得超过1.1万个赞
知道大有可为答主
回答量:6642
采纳率:0%
帮助的人:1亿
展开全部
解:
(1)由于:椭圆C上一点(1,3/2)到F1,F2两点的距离之和等于4
则由椭圆定义可知:4=2a,则:a=2
又:椭圆C:x2/a2+y2/b2=1(a>b>0)
故:椭圆的标准方程可表示为:x^2/4+y^2/b^2=1
又:(1,3/2)在椭圆上
则有:1/4+9/4/(b^2)=1
解得:b^2=3
则:椭圆C的标准方程为:x^2/4+y^2/3=1
则:c^2=a^2-b^2=1;则:c=1
又:椭圆的焦点F1,F2在X轴上
则:F1(-1,0)F2(1,0)
(2)
设K(x0,y0),线段F1K的中点为P
由于:F1(-1,0)K(x0,y0)
则:P(x0/2-1/2,y0/2) (中点坐标公式)
由于:点K椭圆C上的动点
则有:x0^2/4+y0^2/3=1 -----[1]
令Xp=x0/2-1/2,Yp=y0/2
则有:x0=2Xp+1,y0=2Yp
将两式代入[1]得:
(2Xp+1)^2/4+(2Yp)^2/3=1
即:线段F1K的中点P的轨迹方程
为:(2x+1)^2/4+4y^2/3=1
解答完毕,请指教
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式