在数列{An}中,已知A1=1,An=2Sn^2/(2Sn-1),(n>=2),证明{1/Sn}是等差数列,并求Sn

 我来答
京斯年0GZ
2022-05-20 · TA获得超过6212个赞
知道小有建树答主
回答量:306
采纳率:100%
帮助的人:74.8万
展开全部
n>=2时:
∵an=2Sn^2/[(2Sn)-1]
∴Sn-(Sn-1)=2Sn^2/[(2Sn)-1]
两边同时乘以(2Sn)-1并化简得
2Sn(Sn-1)+Sn-(Sn-1)=0
两边同时除以Sn(Sn-1)得
2+1/(Sn-1)-1/Sn=0
∴1/Sn-1/(Sn-1)=2又1/S1=1/a1=1
∴1/Sn=2n-1
当n=1时成立
∴1/Sn=2n-1
∴数列{1/Sn}是等差数列
∴Sn=1/(2n-1)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式