为什么当x趋近于0时,(sinx)/x的极限等于1
展开全部
解题过程如下:
limsinx(x->0)=0
limx(x->0)=0
(sinx)'=cosx;(x)'=1
=lim(sinx/x)
=lim(cosx/1)
=cos0
=1
扩展资料
求函数极限的方法:
利用函数连续性,直接将趋向值带入函数自变量中,此时要要求分母不能为0。
当分母等于零时,就不能将趋向值直接代入分母,因式分解,通过约分使分母不会为零。若分母出现根号,可以配一个因子使根号去除。
如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小)
采用洛必达法则求极限,当遇到分式0/0或者∞/∞时可以采用洛必达,其他形式也可以通过变换成此形式。符合形式的分式的极限等于分式的分子分母同时求导。
北京埃德思远电气技术咨询有限公司
2021-11-22 广告
2021-11-22 广告
取对数 ln原式=lim(x→0+)(ln(sinx)-lnx)/x =lim(x→0+)(cosx/sinx-1/x)/1 (洛必达法则) =lim(x→0+)(xcosx-sinx)/(xsinx) =lim(x→0+)(xcosx-s...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐于2017-08-14
展开全部
有人说,是用洛必达法则算出来的。其实在这里用洛必达法则是错误的。
因为用洛必达法则,就必须用到sinx的导数是cosx这点。
但是在证明sinx的导数是cosx的时候,又用到了x→0的时候(sinx)/x的极限是1这个条件。
所以在这里证明,如果用洛必达法则,就是循环证明,是错误的证明方法。
这个极限的证明,其实是利用单位圆,然后根据几何知识,用夹逼定理来做的。
因为用洛必达法则,就必须用到sinx的导数是cosx这点。
但是在证明sinx的导数是cosx的时候,又用到了x→0的时候(sinx)/x的极限是1这个条件。
所以在这里证明,如果用洛必达法则,就是循环证明,是错误的证明方法。
这个极限的证明,其实是利用单位圆,然后根据几何知识,用夹逼定理来做的。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因为x趋于0时,直接用定义,sinx~tanx~x,所以sinx可以直接写成x,结果等于1。如果要刨根问底为什么sinx~x,x这时表示的是弧度单位,过程自己推算。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
分子分母都趋于0时可约,故等于1
追问
我懂了。那分子分母递减的速度不同,这个也直接忽略了还是另有解释?
追答
这是趋近于0,不用考虑速度,0和一半0谁大?实际上那也不是1,只是趋近于1,但问题是极限嘛,就是1咯。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
可以用洛必达法则
1,limsinx(x->0)=0
2,limx(x->0)=0
(sinx)'=cosx;(x)'=1;
lim(sinx/x)=lim(cosx/1)=cos0=1
洛必达法则可以看百度百科http://baike.baidu.com/item/%E6%B4%9B%E5%BF%85%E8%BE%BE%E6%B3%95%E5%88%99
1,limsinx(x->0)=0
2,limx(x->0)=0
(sinx)'=cosx;(x)'=1;
lim(sinx/x)=lim(cosx/1)=cos0=1
洛必达法则可以看百度百科http://baike.baidu.com/item/%E6%B4%9B%E5%BF%85%E8%BE%BE%E6%B3%95%E5%88%99
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询