展开全部
1/(2^2-1)+1/(3^2-1)+1/(4^2-1)+...+1/(20^2-1)
=1/(2+1)(2-1)+1/(3+1)(3-1)+...+1/(20+1)(20-1)
=1/(3×1)+1/(4×2)+...+1/(21×19)
=[(1-1/3)+(1/2-1/4)+...+(1/19-1/21)]/2
=[1+1/2-1/20-1/21]/2
=589/840
=1/(2+1)(2-1)+1/(3+1)(3-1)+...+1/(20+1)(20-1)
=1/(3×1)+1/(4×2)+...+1/(21×19)
=[(1-1/3)+(1/2-1/4)+...+(1/19-1/21)]/2
=[1+1/2-1/20-1/21]/2
=589/840
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
分母可以用平方差公式。
原式=1/[(2-1)(2+1)]+1/[(3-1)(3+1)]+1/[(4-1)(4+1)]+1/[(5-1)(5+1)]+……+1/[(20-1)(20+1)]
=1/2{(1/1-1/3)+(1/2-1/4)+(1/3-1/5)+(1/4-1/6)+……+(1/18-1/20)+(1/19-1/21)}
=1/2(1+1/2-1/20-1/21)
=589/840
原式=1/[(2-1)(2+1)]+1/[(3-1)(3+1)]+1/[(4-1)(4+1)]+1/[(5-1)(5+1)]+……+1/[(20-1)(20+1)]
=1/2{(1/1-1/3)+(1/2-1/4)+(1/3-1/5)+(1/4-1/6)+……+(1/18-1/20)+(1/19-1/21)}
=1/2(1+1/2-1/20-1/21)
=589/840
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询