求和 : 1/(2^2-1)+1/(3^2-1)+1/(4^2-1)+...+1/(20^2-1)

讲细点哦..... 讲细点哦.. 展开
pengp0918
2012-11-15 · TA获得超过4.9万个赞
知道大有可为答主
回答量:1.3万
采纳率:61%
帮助的人:4118万
展开全部
1/(2^2-1)+1/(3^2-1)+1/(4^2-1)+...+1/(20^2-1)
=1/2[(1-1/3)+(1/2 -1/4) +(1/3 -1/5) + (1/4-1/6)+...+(1/19 - 1/21)]
=1/2[(1+ 1/2 -1/20- 1/21)]
=589/840
祝你学习进步,更上一层楼! (*^__^*)
76rty21
2012-11-15 · TA获得超过617个赞
知道答主
回答量:95
采纳率:0%
帮助的人:79.7万
展开全部
1/(2^2-1)+1/(3^2-1)+1/(4^2-1)+...+1/(20^2-1)
=1/(2+1)(2-1)+1/(3+1)(3-1)+...+1/(20+1)(20-1)
=1/(3×1)+1/(4×2)+...+1/(21×19)
=[(1-1/3)+(1/2-1/4)+...+(1/19-1/21)]/2
=[1+1/2-1/20-1/21]/2
=589/840
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
新兰333
高赞答主

2012-11-15 · 一个有才华的人
知道大有可为答主
回答量:2.8万
采纳率:58%
帮助的人:1.5亿
展开全部
分母可以用平方差公式。
原式=1/[(2-1)(2+1)]+1/[(3-1)(3+1)]+1/[(4-1)(4+1)]+1/[(5-1)(5+1)]+……+1/[(20-1)(20+1)]
=1/2{(1/1-1/3)+(1/2-1/4)+(1/3-1/5)+(1/4-1/6)+……+(1/18-1/20)+(1/19-1/21)}
=1/2(1+1/2-1/20-1/21)
=589/840
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式