数学建模MATLAB问题两道!求大神!急!在线等!
1.随机产生500个0到100的整数FS作为学生的考试分数.(1)画出FS的简单直方图;(2)画出每个分数段(0~10、10~20、…,90~100)的统计频数直方图;2...
1.随机产生500个0到100的整数FS作为学生的考试分数.
(1) 画出FS的简单直方图;
(2) 画出每个分数段(0~10、10~20、…,90~100)的统计频数直方图;
2.非线性回归尝试
下表是到1994年的游泳世界纪录,试估计时间y与距离x的关系.
距离x(米) 50 100 200 400 800 1500
时间y(秒)21.81 48.42 106.69 225 466.60 863.48
说明:用线性回归方法将得到: y=-11.0089+0.5961x,但当x=18时,y=-0.2974,这是非常荒唐的结果!显然,一个基本要求是当x=0时,y=0 .试尝试使用非线性回归模型: .y=a*x^b. 展开
(1) 画出FS的简单直方图;
(2) 画出每个分数段(0~10、10~20、…,90~100)的统计频数直方图;
2.非线性回归尝试
下表是到1994年的游泳世界纪录,试估计时间y与距离x的关系.
距离x(米) 50 100 200 400 800 1500
时间y(秒)21.81 48.42 106.69 225 466.60 863.48
说明:用线性回归方法将得到: y=-11.0089+0.5961x,但当x=18时,y=-0.2974,这是非常荒唐的结果!显然,一个基本要求是当x=0时,y=0 .试尝试使用非线性回归模型: .y=a*x^b. 展开
1个回答
展开全部
如下:
1、
clc,clear,close
FS=ceil(100*rand(500,1));
hist(FS,10);
2、
clc,clear,close
% x距离(m),y时间(s)
x=[ 50;100;200;400;800;1500];
y=[21.81;48.42;106.69;225;466.60;863.48];
plot(x,y,'o');
hold on
p=fittype('a*x.^b','independent','x');
f=fit(x,y,p)
plot(f,x,y);
1、
clc,clear,close
FS=ceil(100*rand(500,1));
hist(FS,10);
2、
clc,clear,close
% x距离(m),y时间(s)
x=[ 50;100;200;400;800;1500];
y=[21.81;48.42;106.69;225;466.60;863.48];
plot(x,y,'o');
hold on
p=fittype('a*x.^b','independent','x');
f=fit(x,y,p)
plot(f,x,y);
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询