方向导数和梯度

 我来答
黑科技1718
2022-07-14 · TA获得超过5841个赞
知道小有建树答主
回答量:433
采纳率:97%
帮助的人:80.4万
展开全部
为什么会有方向导数?

在微积分课程中,我们知道函数在某一点的导数(微商)代表了函数在该点的变化率。微分和积分,它们的定义都是建立在极限的基础上。对于单变量函数f(x),它在x0处导数是:当x趋近于x0时,函数的改变量与自变量的改变量的比值的极限,即微商(导数)等于差商的极限

对于单变量函数,自变量只有一个,当x趋近于x0时只能在直线上变动,移动的方向只有左右两方。

然而,对于多变量函数,自变量有多个,表示自变量的点在一个区域内变动,不仅可以移动距离,而且可以按任意的方向来移动同一段距离。因此,函数的变化不仅与移动的距离有关,而且与移动的方向有关。 因此,函数的变化率是与方向有关的。这也才有了方向导数的定义,即某一点在某一趋近方向上的导数值。 假设给定函数u=u(M),取一点M0=(x0,y0,z0),L是由M0出发的任一半直线,则u在M0点L的方向导数定义为:

梯度

上面有了方向导数的定义,我们进一步来推导方向导数的表示,命L的方向余弦为(cosα,cosβ,cosγ),则L上的M可表示为

于是u对L的方向导数为

注意,在上面的推导中用到了全微分公式.

令向量, L方向可以表示为. 因为l是一个单位向量,所以

这表达了L上的方向向量其实是n在L方向上的投影。当L的方向变化,投影量随之改变,也就代表了不同的方向导数。 当L与n同向时,便取得最大值|n|,我们称n为u在该点的梯度。 可以看到梯度即是某一点最大的方向导数,沿梯度方向函数有最大的变化率(正向增加,逆向减少)。

另外还可以证明,在某一点的梯度方向,就是过该点的等值面的切平面的法线方向。 但需要注意的是,这并不是定理,只是等值函数的法向量的表达式与函数的梯度的表达式一致而已,并非两者之间必然的存在关系。因此,在某一点沿着梯度看去,等值面分布最密,即达到临近等值面的距离最小。

多变量函数的极值

对于单变量函数,若在某点取得极值,则该点的导数为0。 同样对于多变量函数,在某点为极大值或极小值只有当在该点的每个偏导数等于0才有可能,也就是说梯度等于0。 因此,在多变量函数中,驻点,也就是导数为0的点,指的是每个偏导数等于0,也就是梯度等于0的点。进而,在求极值时,我们可以先找到梯度为0的驻点,在通过定理(查书呗)判断它是否是极值点,极大值还是极小值。

原文参考:http://blog.csdn.net/wolenski/article/details/8030654
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式