这道题能帮我解一下吗?
已知b×h=400mm×600mm,N=1000kN,M=450kN.m;C25砼,HRB400级钢筋,l0=7.2m,采用非对称配筋,求As及As’(ξb=0.517f...
已知b×h=400mm×600mm,N=1000kN,M=450kN.m;C25砼,HRB400级钢筋,l0=7.2m,采用非对称配筋,求As及As’(ξb =0.517 fy=360N/mm2 α1=1.0 fc=11.9N/mm2 as=40mm)
你好,这个能帮我解一下吗? 展开
你好,这个能帮我解一下吗? 展开
展开全部
1 柱正截面承载力计算:
1.1 基本资料
1.1.1 工程名称:
1.1.2 轴向压力设计值 N = 1000kN, M1x = 0kN·m, M2x = 450kN·m, M1y = 0kN·m,
M2y = 450kN·m; 构件的计算长度 Lcx = 7200mm, Lcy = 7200mm;
构件的计算长度 L0x = 7200mm, L0y = 7200mm
1.1.3 矩形截面,截面宽度 b = 400mm,截面高度 h = 600mm
1.1.4 受压区纵向钢筋截面面积 As' = 0mm2
1.1.5 混凝土强度等级为 C25, fc = 11.94N/mm2; 钢筋抗拉强度设计值 fy = 360N/mm2,
钢筋抗压强度设计值 fy' = 360N/mm2,钢筋弹性模量 Es = 200000N/mm2;
相对界限受压区高度 ζb = 0.5176
1.1.6 纵筋的混凝土保护层厚度 c = 30mm; 全部纵筋最小配筋率 ρmin = 0.55%
1.2 轴心受压构件验算
1.2.1 钢筋混凝土轴心受压构件的稳定系数 φ
L0/i = Max{L0x/ix, L0y/iy} = Max{7200/173, 7200/115} = Max{41.6, 62.4}
= 62.4,取 φ = 0.807
1.2.2 矩形截面面积 A = b·h = 400*600 = 240000mm2
轴压比 Uc = N / (fc·A) = 1000000/(11.94*240000) = 0.35
1.2.3 纵向钢筋最小截面面积
全部纵向钢筋的最小截面面积 As,min = A·ρmin = 240000*0.55% = 1320mm2
一侧纵向钢筋的最小截面面积 As1,min = A·0.20% = 240000*0.20% = 480mm2
1.2.4 全部纵向钢筋的截面面积 As' 按下式求得:
N ≤ 0.9·φ·(fc·A + fy'·As') (混凝土规范式 6.2.15)
As' = [N / 0.9φ - fc·A] / (fy' - fc)
= [1000000/(0.9*0.807)-11.94*240000]/(360-11.94)
= -4279mm2 < As,min = 1320mm2,取 As' = As,min
1.3 考虑二阶效应后的弯矩设计值
1.3.1 弯矩设计值 Mx
1.3.1.1 lcx / ix = 7200/173 = 41.6
34 - 12(M1x / M2x) = 34-12*(0/450) = 34
lcx / ix > 34 - 12(M1x / M2x),应考虑轴向压力产生的附加弯矩影响
1.3.1.2 ζc = 0.5·fc·A / N = 1.433 > 1.0,取 ζc = 1.0
附加偏心距 ea = Max{20, h/30} = Max{20, 20} = 20mm
ηnsx = 1 + (lcx / h)2·ζc / [1300·(M2x / N + ea) / h0]
= 1+(7200/600)2*1/[1300*(450000000/1000000+20)/560] = 1.132
Cmx = 0.7 + 0.3M1x / M2x = 0.7+0.3*0/450 = 0.700
Cmx·ηnsx = 0.7*1.132 = 0.792 < 1.0,取 Mx = M2x
1.3.2 弯矩设计值 My
1.3.2.1 lcy / iy = 7200/115 = 62.4
34 - 12(M1y / M2y) = 34-12*(0/450) = 34
lcy / iy > 34 - 12(M1y / M2y),应考虑轴向压力产生的附加弯矩影响
1.3.2.2 ζc = 0.5·fc·A / N = 1.433 > 1.0,取 ζc = 1.0
附加偏心距 ea = Max{20, h/30} = Max{20, 13} = 20mm
ηnsy = 1 + (lcy / h)2·ζc / [1300·(M2y / N + ea) / h0]
= 1+(7200/400)2*1/[1300*(450000000/1000000+20)/360] = 1.191
Cmy = 0.7 + 0.3M1y / M2y = 0.7+0.3*0/450 = 0.700
Cmy·ηnsy = 0.7*1.191 = 0.834 < 1.0,取 My = M2y
1.4 在 Mx 作用下正截面偏心受压承载力计算
1.4.1 初始偏心距 ei
附加偏心距 ea = Max{20, h/30} = Max{20, 20} = 20mm
轴向压力对截面重心的偏心距 e0 = M / N = 450000000/1000000 = 450mm
初始偏心距 ei = e0 + ea = 450+20 = 470mm
1.4.2 轴力作用点至受拉纵筋合力点的距离 e = ei + h / 2 - a = 470+600/2-40 = 730mm
1.4.3 混凝土受压区高度 x
Asx' = 0mm2 < As1,min = 480mm2,取 Asx' = 480mm2
当已知 As',受压区高度 x 可由混凝土规范公式 6.2.17-2 求得:
N·e ≤ α1·fc·b·x·(h0 - x / 2) + fy'·As'·(h0 - as')
K = h02 - 2·[N·e - fy'·As'·(h0 - as')] / (α1·fc·b)
= 5602-2*[1000000*730-360*480*(560-40)]/(1*11.94*400) = 45597mm2
x = ho - K0.5 = 560-455970.5 = 346.5mm
1.4.4 当 x ≥ 2a' 时,受拉区纵筋面积 As 按下列公式求得:
N ≤ α1·fc·b·x + fy'·As' - σs·As (混凝土规范式 6.2.17-1)
因 x = 346.5mm > ξb·h0 = 289.9mm,属于小偏心受压构件,σs 按下式求得:
σs = Es·εcu·(β1·h0 / x - 1) = 200000*0.0033*(0.8*560/346.5-1) = 193N/mm2
Asx = (α1·fc·b·x + fy'·As' - N) / σs = (1*11.94*400*346.5+360*480-1000000)/193
= 4280mm2
1.4.5 非对称配筋的小偏心受压构件受拉区纵向钢筋的受压承载力验算
当 α1·fc·b·h = 1*11.94*400600 = 2866286N ≥ N = 1000000N 时,不需要验算。
1.5 在 My 作用下正截面偏心受压承载力计算
1.5.1 初始偏心距 ei
附加偏心距 ea = Max{20, h/30} = Max{20, 13.3} = 20mm
轴向压力对截面重心的偏心距 e0 = M / N = 450000000/1000000 = 450mm
初始偏心距 ei = e0 + ea = 450+20 = 470mm
1.5.2 轴力作用点至受拉纵筋合力点的距离 e = ei + h / 2 - a = 470+400/2-40 = 630mm
1.5.3 混凝土受压区高度 x
Asy' = 0mm2 < As1,min = 480mm2,取 Asy' = 480mm2
当已知 As',受压区高度 x 可由混凝土规范公式 6.2.17-2 求得:
N·e ≤ α1·fc·b·x·(h0 - x / 2) + fy'·As'·(h0 - as')
K = h02 - 2·[N·e - fy'·As'·(h0 - as')] / (α1·fc·b)
= 3602-2*[1000000*630-360*480*(360-40)]/(1*11.94*600) = -30804mm2
当 K < 0 时,方程无解,应取 x = h,重新计算受压区纵筋面积 Asy'
1.5.4 当 x ≥ 2a' 时,受压区纵筋面积 As' 按混凝土规范公式 6.2.17-2 求得:
N·e ≤ α1·fc·b·x·(h0 - x / 2) + fy'·As'·(h0 - as')
Asy' = [N·e - α1·fc·b·x·(h0 - x / 2)] / [fy'·(h0 - as')]
= [1000000*630-1*11.94*600*400*(360-400/2)]/[360*(360-40)] = 1488mm2
1.5.5 当 x ≥ 2a' 时,受拉区纵筋面积 As 按下列公式求得:
N ≤ α1·fc·b·x + fy'·As' - σs·As (混凝土规范式 6.2.17-1)
因 x = 400mm > ξb·h0 = 186.4mm,属于小偏心受压构件,σs 按下式求得:
σs = Es·εcu·(β1·h0 / x - 1) = 200000*0.0033*(0.8*360/400-1) = -185N/mm2
Asy = (α1·fc·b·x + fy'·As' - N) / σs = (1*11.94*600*400+360*1488-1000000)/-185
= -12997mm2 < As1,min = 480mm2,取 Asy = 480mm2
1.5.6 非对称配筋的小偏心受压构件受拉区纵向钢筋的受压承载力验算
当 α1·fc·b·h = 1*11.94*600400 = 2866286N ≥ N = 1000000N 时,不需要验算。
1.1 基本资料
1.1.1 工程名称:
1.1.2 轴向压力设计值 N = 1000kN, M1x = 0kN·m, M2x = 450kN·m, M1y = 0kN·m,
M2y = 450kN·m; 构件的计算长度 Lcx = 7200mm, Lcy = 7200mm;
构件的计算长度 L0x = 7200mm, L0y = 7200mm
1.1.3 矩形截面,截面宽度 b = 400mm,截面高度 h = 600mm
1.1.4 受压区纵向钢筋截面面积 As' = 0mm2
1.1.5 混凝土强度等级为 C25, fc = 11.94N/mm2; 钢筋抗拉强度设计值 fy = 360N/mm2,
钢筋抗压强度设计值 fy' = 360N/mm2,钢筋弹性模量 Es = 200000N/mm2;
相对界限受压区高度 ζb = 0.5176
1.1.6 纵筋的混凝土保护层厚度 c = 30mm; 全部纵筋最小配筋率 ρmin = 0.55%
1.2 轴心受压构件验算
1.2.1 钢筋混凝土轴心受压构件的稳定系数 φ
L0/i = Max{L0x/ix, L0y/iy} = Max{7200/173, 7200/115} = Max{41.6, 62.4}
= 62.4,取 φ = 0.807
1.2.2 矩形截面面积 A = b·h = 400*600 = 240000mm2
轴压比 Uc = N / (fc·A) = 1000000/(11.94*240000) = 0.35
1.2.3 纵向钢筋最小截面面积
全部纵向钢筋的最小截面面积 As,min = A·ρmin = 240000*0.55% = 1320mm2
一侧纵向钢筋的最小截面面积 As1,min = A·0.20% = 240000*0.20% = 480mm2
1.2.4 全部纵向钢筋的截面面积 As' 按下式求得:
N ≤ 0.9·φ·(fc·A + fy'·As') (混凝土规范式 6.2.15)
As' = [N / 0.9φ - fc·A] / (fy' - fc)
= [1000000/(0.9*0.807)-11.94*240000]/(360-11.94)
= -4279mm2 < As,min = 1320mm2,取 As' = As,min
1.3 考虑二阶效应后的弯矩设计值
1.3.1 弯矩设计值 Mx
1.3.1.1 lcx / ix = 7200/173 = 41.6
34 - 12(M1x / M2x) = 34-12*(0/450) = 34
lcx / ix > 34 - 12(M1x / M2x),应考虑轴向压力产生的附加弯矩影响
1.3.1.2 ζc = 0.5·fc·A / N = 1.433 > 1.0,取 ζc = 1.0
附加偏心距 ea = Max{20, h/30} = Max{20, 20} = 20mm
ηnsx = 1 + (lcx / h)2·ζc / [1300·(M2x / N + ea) / h0]
= 1+(7200/600)2*1/[1300*(450000000/1000000+20)/560] = 1.132
Cmx = 0.7 + 0.3M1x / M2x = 0.7+0.3*0/450 = 0.700
Cmx·ηnsx = 0.7*1.132 = 0.792 < 1.0,取 Mx = M2x
1.3.2 弯矩设计值 My
1.3.2.1 lcy / iy = 7200/115 = 62.4
34 - 12(M1y / M2y) = 34-12*(0/450) = 34
lcy / iy > 34 - 12(M1y / M2y),应考虑轴向压力产生的附加弯矩影响
1.3.2.2 ζc = 0.5·fc·A / N = 1.433 > 1.0,取 ζc = 1.0
附加偏心距 ea = Max{20, h/30} = Max{20, 13} = 20mm
ηnsy = 1 + (lcy / h)2·ζc / [1300·(M2y / N + ea) / h0]
= 1+(7200/400)2*1/[1300*(450000000/1000000+20)/360] = 1.191
Cmy = 0.7 + 0.3M1y / M2y = 0.7+0.3*0/450 = 0.700
Cmy·ηnsy = 0.7*1.191 = 0.834 < 1.0,取 My = M2y
1.4 在 Mx 作用下正截面偏心受压承载力计算
1.4.1 初始偏心距 ei
附加偏心距 ea = Max{20, h/30} = Max{20, 20} = 20mm
轴向压力对截面重心的偏心距 e0 = M / N = 450000000/1000000 = 450mm
初始偏心距 ei = e0 + ea = 450+20 = 470mm
1.4.2 轴力作用点至受拉纵筋合力点的距离 e = ei + h / 2 - a = 470+600/2-40 = 730mm
1.4.3 混凝土受压区高度 x
Asx' = 0mm2 < As1,min = 480mm2,取 Asx' = 480mm2
当已知 As',受压区高度 x 可由混凝土规范公式 6.2.17-2 求得:
N·e ≤ α1·fc·b·x·(h0 - x / 2) + fy'·As'·(h0 - as')
K = h02 - 2·[N·e - fy'·As'·(h0 - as')] / (α1·fc·b)
= 5602-2*[1000000*730-360*480*(560-40)]/(1*11.94*400) = 45597mm2
x = ho - K0.5 = 560-455970.5 = 346.5mm
1.4.4 当 x ≥ 2a' 时,受拉区纵筋面积 As 按下列公式求得:
N ≤ α1·fc·b·x + fy'·As' - σs·As (混凝土规范式 6.2.17-1)
因 x = 346.5mm > ξb·h0 = 289.9mm,属于小偏心受压构件,σs 按下式求得:
σs = Es·εcu·(β1·h0 / x - 1) = 200000*0.0033*(0.8*560/346.5-1) = 193N/mm2
Asx = (α1·fc·b·x + fy'·As' - N) / σs = (1*11.94*400*346.5+360*480-1000000)/193
= 4280mm2
1.4.5 非对称配筋的小偏心受压构件受拉区纵向钢筋的受压承载力验算
当 α1·fc·b·h = 1*11.94*400600 = 2866286N ≥ N = 1000000N 时,不需要验算。
1.5 在 My 作用下正截面偏心受压承载力计算
1.5.1 初始偏心距 ei
附加偏心距 ea = Max{20, h/30} = Max{20, 13.3} = 20mm
轴向压力对截面重心的偏心距 e0 = M / N = 450000000/1000000 = 450mm
初始偏心距 ei = e0 + ea = 450+20 = 470mm
1.5.2 轴力作用点至受拉纵筋合力点的距离 e = ei + h / 2 - a = 470+400/2-40 = 630mm
1.5.3 混凝土受压区高度 x
Asy' = 0mm2 < As1,min = 480mm2,取 Asy' = 480mm2
当已知 As',受压区高度 x 可由混凝土规范公式 6.2.17-2 求得:
N·e ≤ α1·fc·b·x·(h0 - x / 2) + fy'·As'·(h0 - as')
K = h02 - 2·[N·e - fy'·As'·(h0 - as')] / (α1·fc·b)
= 3602-2*[1000000*630-360*480*(360-40)]/(1*11.94*600) = -30804mm2
当 K < 0 时,方程无解,应取 x = h,重新计算受压区纵筋面积 Asy'
1.5.4 当 x ≥ 2a' 时,受压区纵筋面积 As' 按混凝土规范公式 6.2.17-2 求得:
N·e ≤ α1·fc·b·x·(h0 - x / 2) + fy'·As'·(h0 - as')
Asy' = [N·e - α1·fc·b·x·(h0 - x / 2)] / [fy'·(h0 - as')]
= [1000000*630-1*11.94*600*400*(360-400/2)]/[360*(360-40)] = 1488mm2
1.5.5 当 x ≥ 2a' 时,受拉区纵筋面积 As 按下列公式求得:
N ≤ α1·fc·b·x + fy'·As' - σs·As (混凝土规范式 6.2.17-1)
因 x = 400mm > ξb·h0 = 186.4mm,属于小偏心受压构件,σs 按下式求得:
σs = Es·εcu·(β1·h0 / x - 1) = 200000*0.0033*(0.8*360/400-1) = -185N/mm2
Asy = (α1·fc·b·x + fy'·As' - N) / σs = (1*11.94*600*400+360*1488-1000000)/-185
= -12997mm2 < As1,min = 480mm2,取 Asy = 480mm2
1.5.6 非对称配筋的小偏心受压构件受拉区纵向钢筋的受压承载力验算
当 α1·fc·b·h = 1*11.94*600400 = 2866286N ≥ N = 1000000N 时,不需要验算。
来自:求助得到的回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询