复变函数基础题 (1+i)^100+(1-i)^100 答案是2^51 求指数形式解题过程
4个回答
展开全部
1+i = √2(sin(π/4) + icos(π/4))
(1+i)^100= 2^(50)[sin(25π)-cos(25π)] =2^50
1-i = √2(sin(-π/4) + icos(-π/4))
(1-i)^100= 2^50[sin(-25π)-cos(-25π)] = 2^50
(1+i)^100+(1-i)^100 =2^51
(1+i)^100= 2^(50)[sin(25π)-cos(25π)] =2^50
1-i = √2(sin(-π/4) + icos(-π/4))
(1-i)^100= 2^50[sin(-25π)-cos(-25π)] = 2^50
(1+i)^100+(1-i)^100 =2^51
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
由1+i=(√2)e^(iπ/4),1-i=(√2)e^(-iπ/4)
那么(1+i)^100+(1-i)^100=(2^50)[e^(25πi)+e^(-25πi)]=2^51
那么(1+i)^100+(1-i)^100=(2^50)[e^(25πi)+e^(-25πi)]=2^51
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1+i)^100+(1-i)^100
=[(1+i)^2]^50+[(1-i)^2]^50
=(2i)^50+(-2i)^50
=(2^50)(i^50)+(2^50)(-i)^50
=2^50+2^50
=2*2^50
=2^51
=[(1+i)^2]^50+[(1-i)^2]^50
=(2i)^50+(-2i)^50
=(2^50)(i^50)+(2^50)(-i)^50
=2^50+2^50
=2*2^50
=2^51
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询