复变函数基础题 (1+i)^100+(1-i)^100 答案是2^51 求指数形式解题过程

无常之世
2012-11-15 · 超过15用户采纳过TA的回答
知道答主
回答量:63
采纳率:0%
帮助的人:41.5万
展开全部
这题关键是利用欧拉公式,e^(iθ)=cosθ+isinθ
1+i=(根号2)*[(cos(π/4)+isin(π/4)]=(根号2)*e^(i*π/4)
(1+i)^100=(根号2)^100*e(i*25π)=2^50*(cos25π+isin25π)
=-2^50
同理(1-i)^100=-2^50
(1+i)^100+(1-i)^100=-2^50-2^50=-2^51
答案为什么是正的2^51 呢,是不是看错了
tllau38
高粉答主

2012-11-15 · 关注我不会让你失望
知道顶级答主
回答量:8.7万
采纳率:73%
帮助的人:2亿
展开全部
1+i = √2(sin(π/4) + icos(π/4))
(1+i)^100= 2^(50)[sin(25π)-cos(25π)] =2^50
1-i = √2(sin(-π/4) + icos(-π/4))
(1-i)^100= 2^50[sin(-25π)-cos(-25π)] = 2^50
(1+i)^100+(1-i)^100 =2^51
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
渋渋不可负d94cc
2012-11-15 · TA获得超过3992个赞
知道大有可为答主
回答量:2441
采纳率:25%
帮助的人:1029万
展开全部
由1+i=(√2)e^(iπ/4),1-i=(√2)e^(-iπ/4)
那么(1+i)^100+(1-i)^100=(2^50)[e^(25πi)+e^(-25πi)]=2^51
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
物理教与学
2012-11-15 · 专注初高中物理课件,教案设计。
物理教与学
采纳数:2296 获赞数:18972

向TA提问 私信TA
展开全部
(1+i)^100+(1-i)^100
=[(1+i)^2]^50+[(1-i)^2]^50
=(2i)^50+(-2i)^50
=(2^50)(i^50)+(2^50)(-i)^50
=2^50+2^50
=2*2^50
=2^51
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式