微积分, 求不定积分 ∫1/(1+x^4)dx

 我来答
大沈他次苹0B
2022-05-23 · TA获得超过7338个赞
知道大有可为答主
回答量:3059
采纳率:100%
帮助的人:179万
展开全部
答:
我曾经答过一样的题.
原式
=∫(x^2+1)/[2(x^4+1)]dx-∫(x^2-1)/[2(x^4+1)]dx
=1/2∫(1+1/x^2)/(x^2+1/x^2)dx-1/2∫(1-1/x^2)/(x^2+1/x^2)dx
=1/2∫d(x-1/x)/[(x-1/x)^2+2]-1/2∫d(x+1/x)/[(x+1/x)^2-2]
=1/4∫d(x-1/x)/[(x-1/x)^2/2+1]-1/2∫d(x+1/x)/[(x+1/x+√2)(x+1/x-√2)]
=√2/4*arctan[(x-1/x)/√2]-1/4∫d(x+1/x)/(x+1/x+√2)-1/4∫d(x+1/x)/(x+1/x-√2)
=√2/4*arctan[(x-1/x)/√2]-1/4*ln|x+1/x+√2|-1/4*ln|x+1/x-√2| +C
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式