蝴蝶定理
1个回答
展开全部
分类: 教育/科学 >> 科学技术
问题描述:
有关蝴蝶定理的知识
解析:
自从学习几何画板以来,我一直在思索着这样一个问题:怎么才能把“蝴蝶定理”推广一下。
我想,能不能把“蝴蝶定理”中的圆由一个变为两个,相应的,还保持一种美妙的性质呢?如图I,是“蝴蝶定理”,有结论EP=PF;如图II,是“蝴蝶定理”的演变,点P,Q,R,S是否也存在某种关系呢?
我在课下做了一个比较精确的图,并进行了测量,进而提出了猜测:QM*PM = MS*MR,或者QM+PM = MS+MR。我又做了几个图进行检验,结果误差都比较小。上机时,利用几何画板做了一个动画,发现误差变化范围很大。我就开始怀疑这个结论。但是我并不死心。我又进行了测算,终于发现等式:成立,其误差在千分位之后。而后给出了一个数学上的证明。
这件事使我感觉到几何画板有以下几个妙处:比手工做图方便、精确、直观、连续。
如图I,取圆O内一条弦的中点P,过P点作AB、CD交圆于A、B、C、D点,连AD、BC交弦于E、F点,则EP=PF。这就是著名的“蝴蝶定理”。
题目:过圆心O的两个同心圆内弦中点M作两条直线交圆于A、B、C、D、E、F、G、H,连AF、BE、CH、DG分别交弦于点P、Q、R、S,则有等式:成立。这就是蝴蝶定理的推广。
证明:引理,如右图,有结论
由及正弦定理即可得到:
原结论
作OM1AD于M1,OM2EH于M2,
于是,MA - MD = MB - MC = 2MM1 = 2Msin;
MH - ME = MG - MF = 2MM2 = 2Msin
且MA*MD = ME*MH,MB*MC = MF*MG,代入上式,又
故原式成立
证毕。
问题描述:
有关蝴蝶定理的知识
解析:
自从学习几何画板以来,我一直在思索着这样一个问题:怎么才能把“蝴蝶定理”推广一下。
我想,能不能把“蝴蝶定理”中的圆由一个变为两个,相应的,还保持一种美妙的性质呢?如图I,是“蝴蝶定理”,有结论EP=PF;如图II,是“蝴蝶定理”的演变,点P,Q,R,S是否也存在某种关系呢?
我在课下做了一个比较精确的图,并进行了测量,进而提出了猜测:QM*PM = MS*MR,或者QM+PM = MS+MR。我又做了几个图进行检验,结果误差都比较小。上机时,利用几何画板做了一个动画,发现误差变化范围很大。我就开始怀疑这个结论。但是我并不死心。我又进行了测算,终于发现等式:成立,其误差在千分位之后。而后给出了一个数学上的证明。
这件事使我感觉到几何画板有以下几个妙处:比手工做图方便、精确、直观、连续。
如图I,取圆O内一条弦的中点P,过P点作AB、CD交圆于A、B、C、D点,连AD、BC交弦于E、F点,则EP=PF。这就是著名的“蝴蝶定理”。
题目:过圆心O的两个同心圆内弦中点M作两条直线交圆于A、B、C、D、E、F、G、H,连AF、BE、CH、DG分别交弦于点P、Q、R、S,则有等式:成立。这就是蝴蝶定理的推广。
证明:引理,如右图,有结论
由及正弦定理即可得到:
原结论
作OM1AD于M1,OM2EH于M2,
于是,MA - MD = MB - MC = 2MM1 = 2Msin;
MH - ME = MG - MF = 2MM2 = 2Msin
且MA*MD = ME*MH,MB*MC = MF*MG,代入上式,又
故原式成立
证毕。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
东莞大凡
2024-11-19 广告
2024-11-19 广告
板格标定棋盘是我们东莞市大凡光学科技有限公司在精密光学测量领域的重要工具。它采用高精度设计,确保每一个格板都达到严格的校准标准。通过使用板格标定棋盘,我们能够有效地对光学测量系统进行校准,从而提升测量的准确性和可靠性。这一工具在光学仪器的研...
点击进入详情页
本回答由东莞大凡提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询