一阶线性非齐次微分方程y'=p(x)y+q(x)的通解是?
1个回答
2022-12-21 · 百度认证:北京惠企网络技术有限公司官方账号
关注
展开全部
先算对应的齐次方程的解.
y'+P(x)y=0
y'/y=-P(x)
lny=-∫P(x)dx+C
y=ke^(-∫P(x)dx)
下面用常数变易法求解原方程的解.
设k为u(x)
y=u(x)e^(-∫P(x)dx)
y'=u'(x)e^(-∫P(x)dx)-u(x)P(x)e^(-∫P(x)dx)
代入得:
Q(x)
=u'(x)e^(-∫P(x)dx)-u(x)P(x)e^(-∫P(x)dx)+u(x)P(x)e^(-∫P(x)dx)
u(x)=∫Q(x)e^(∫P(x)dx)+C
y=e^(-∫P(x)dx)(∫Q(x)e^(∫P(x)dx)+C)
扩展资料:
定义
形如 (记为式1)的方程称为一阶线性微分方程。其特点是它关于未知函数y及其一阶导数是一次方程。这里假设 , 是x的连续函数。
如果 不恒为0,式1称为一阶非齐线性方程,式2也称为对应于式1的齐线性方程。式2是变量分离方程,它的通解为 ,这里C是任意常数。
参考资料:百度百科——一阶线性微分方程
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |