如何判断一个函数的凹凸性?

 我来答
生活家马先生
2022-09-27 · TA获得超过18.4万个赞
知道小有建树答主
回答量:136
采纳率:100%
帮助的人:3.3万
展开全部

设f(x)在[a,b]上连续,在(a,b)内具有一阶和二阶导数,那么,

(1)若在(a,b)内f''(x)>0,则f(x)在[a,b]上的图形是凹的;

(2)若在(a,b)内f’‘(x)<0,则f(x)在[a,b]上的图形是凸的。

判断函数极大值以及极小值:

结合一阶、二阶导数可以求函数的极值。当一阶导数等于0,而二阶导数大于0时,为极小值点。当一阶导数等于0,而二阶导数小于0时,为极大值点;当一阶导数和二阶导数都等于0时,为驻点

扩展资料

1、f(λx1+(1-λ)x2)<=λf(x1)+(1-λ)f(x2) , 即V型,为“凸向原点”,或“下凸”(也可说上凹),(有的简称凸有的简称凹)

2、f(λx1+(1-λ)x2)>=λf(x1)+(1-λ)f(x2) , 即A型,为“凹向原点”,或“上凸”(下凹),(同样有的简称凹有的简称凸)

在二维环境下,就是通常所说的平面直角坐标系中,可以通过画图直观地看出一条二维曲线是凸还是凹,当然它也对应一个解析表示形式,就是那个不等式。但是,在多维情况下,图形是画不出来的,这就没法从直观上理解“凹”和“凸“的含义了,只能通过表达式

当然n维的表达式比二维的肯定要复杂,但是,不管是从图形上直观理解还是从表达式上理解,都是描述的同一个客观事实。而且,按照函数图形来定义的凹凸和按照函数来定义的凹凸正好相反。

参考资料来源:百度百科-二阶导数

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式