与都是参数θ的无偏估计量,问哪一个较有效

 我来答
晁帅红3X
2021-06-13 · TA获得超过159个赞
知道答主
回答量:174
采纳率:95%
帮助的人:70.4万
展开全部

无偏性。

无偏性不是要求估计量与总体参数不得有偏差,因为这是不可能的,既然是抽样,必然存在抽样误差,不可能与总体完全相同。

正态分布的规律,均值X服从N(u,(σ^2)/n)。正态分布n均数为中心,左右完全对称;两个参数,μ,σ;标准正态分布,u分布拐点,曲线下的面积分布规律,对称均数的两侧面积相等,μ±1.96σ,占总面积95%,μ±2.58σ,占总面积99%。

图形特征

集中性:正态曲线的高峰位于正中央,即均数所在的位置。

对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。

均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。

曲线与横轴间的面积总等于1,相当于概率密度函数的函数从正无穷到负无穷积分的概率为1。即频率的总和为100%。

以上内容参考:百度百科-正态分布

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式