线性规划的求解步骤?
1个回答
展开全部
前面部分同高赞答案相同,后面根据自由未知量具体代值求解
1.将增广矩阵化为最简阶梯阵
化最简阶梯阵的方法:
(1)首元素为1——用1将下面化0
(2)首元素非0非1——直接用首元素将下面的行化0
(3)首元素非0,下方有0元素——非0行调换至第一行
只能初等行变换,每行首元素应为正1,与1同列的其余元素化0
2.先判断,再求解。
矩阵的秩=增广矩阵的秩 与 未知量个数比较
<有无穷多解
=有唯一解
>无解
自由未知量个数:未知量个数-增广矩阵的秩
自由未知量选取:看最简阶梯阵中系数矩阵,系数非1的未知量(注意-1也非1)
3.根据最简阶梯阵写同解方程组
再写一般解
4.自由未知量代值
自由未知量任意取,只需符合方程组
通常都取0,方便计算
检验特解是否正确的方法:将特解代入方程组
1.将增广矩阵化为最简阶梯阵
化最简阶梯阵的方法:
(1)首元素为1——用1将下面化0
(2)首元素非0非1——直接用首元素将下面的行化0
(3)首元素非0,下方有0元素——非0行调换至第一行
只能初等行变换,每行首元素应为正1,与1同列的其余元素化0
2.先判断,再求解。
矩阵的秩=增广矩阵的秩 与 未知量个数比较
<有无穷多解
=有唯一解
>无解
自由未知量个数:未知量个数-增广矩阵的秩
自由未知量选取:看最简阶梯阵中系数矩阵,系数非1的未知量(注意-1也非1)
3.根据最简阶梯阵写同解方程组
再写一般解
4.自由未知量代值
自由未知量任意取,只需符合方程组
通常都取0,方便计算
检验特解是否正确的方法:将特解代入方程组
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
Sievers分析仪
2025-01-06 广告
2025-01-06 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询