卷积神经网络原理

 我来答
柒叶48
2023-01-20 · TA获得超过355个赞
知道小有建树答主
回答量:3803
采纳率:100%
帮助的人:87.5万
展开全部

卷积神经网络是一种前馈型神经网络, 受生物自然视觉认知机制启发而来的. 现在, CNN 已经成为众多科学领域的研究热点之一, 特别是在模式分类领域, 由于该网络避免了对图像的复杂前期预处理, 可以直接输入原始图像, 因而得到了更为广泛的应用. 可应用于图像分类, 目标识别, 目标检测, 语义分割等等.可用于图像分类的卷积神经网络的基本结构.

1. 定义

卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一 。卷积神经网络具有表征学习(representation learning)能力,能够按其阶层结构对输入信息进行平移不变分类(shift-invariant classification),因此也被称为“平移不变人工神经网络(Shift-Invariant Artificial Neural Networks, SIANN)” 。

2. 特点

  • 与之前介绍的神经网络相比,传统神经网络只有线性连接,而CNN包括**卷积(convolution)**操作、**汇合(pooling)操作和非线性激活函数映射(即线性连接)**等等。

    3. 应用与典型网络

    经典的CNN网络:

    Alex-Net

    VGG-Nets

    Resnet

    常用应用:

    深度学习在计算机图像识别上的应用非常成功。利用深度学习,我们能够对图片进行高精度识别,实现这一功能的,主要依靠神经网络中的一种分支,名为卷积网络

希卓
2024-10-17 广告
北京希卓信息技术有限公司是光纤传感测试服务解决方案提供商,拥有光纤光栅解调仪、分布式光纤传感两大核心产品,致力于向客户提供满足其需求的测试解决方案和服务。 希卓拥有专业的技术服务团队,经过多年的努力,希卓信息的业务覆盖了天然气、石油、铁路、... 点击进入详情页
本回答由希卓提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式