如何解空间直角坐标中两点的参数方程?
1个回答
展开全部
基本思路就是把空间曲线投影在坐标面上,根据投影的形状写出参数方程,然后再回代,写出整个式子的参数方程。
或者这样说令其中一个未知数等于t,将t看做已知数,然后解剩下两个未知数的方程组,用t表示结果,得到参数方程
拓展资料:
参数方程和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。
曲线的极坐标参数方程ρ=f(t),θ=g(t)。
圆的参数方程 x=a+r cosθ y=b+r sinθ(θ∈ [0,2π) ) (a,b) 为圆心坐标,r 为圆半径,θ 为参数,(x,y) 为经过点的坐标;
椭圆的参数方程 x=a cosθ y=b sinθ(θ∈[0,2π)) a为长半轴长 b为短半轴长 θ为参数;
双曲线的参数方程 x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数;
抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数。
例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。
参考资料:参数方程——百度百科
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
边缘计算可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询