0.11717171717171717……17的循环节,如何写成分数形式

 我来答
zjkzjh555
2015-09-09 · TA获得超过1.4万个赞
知道大有可为答主
回答量:1.1万
采纳率:81%
帮助的人:1346万
展开全部
其实,循环小数化分数难就难在无限的小数位数。所以我就从这里入手,想办法“剪掉”无限循环小数的“大尾巴”。策略就是用扩倍的方法,把无限循环小数扩大十倍、一百倍或一千倍……使扩大后的无限循环小数与原无限循环小数的“大尾巴”完全相同,然后这两个数相减,“大尾巴”不就剪掉了吗!我们来看两个例子:

⑴ 把0.4747……和0.33……化成分数。

想1: 0.4747……×100=47.4747……

0.4747……×100-0.4747……=47.4747……-0.4747……

(100-1)×0.4747……=47

即99×0.4747…… =47

那么 0.4747……=47/99

想2: 0.33……×10=3.33……

0.33……×10-0.33……=3.33…-0.33……

(10-1) ×0.33……=3

即9×0.33……=3

那么0.33……=3/9=1/3

由此可见, 纯循环小数化分数,它的小数部分可以写成这样的分数:纯循环小数的循环节最少位数是几,分母就是由几个9组成的数;分子是纯循环小数中一个循环节组成的数。

⑵把0.4777……和0.325656……化成分数。

想1:0.4777……×10=4.777……①

0.4777……×100=47.77……②

用②-①即得:

0.4777……×90=47-4

所以, 0.4777……=43/90

想2:0.325656……×100=32.5656……①

0.325656……×10000=3256.56……②

用②-①即得:

0.325656……×9900=3256.5656……-32.5656……

0.325656……×9900=3256-32

所以, 0.325656……=3224/9900

不是所有无限小数都可以化分数,只有循环小数可以化成分数。

纯循环小数:用循环节作分子,9999...9(循环节是几位就有几个9)作分母即可。
例如:1.012012012.... 就是 1又012/999 = 1又4/333

混循环小数:用循环节部分减去非循环部分如果一个循环节不够大用几个,用999...9000...0做分子(9的位数是你取用的循环节的位数,0的位数是非循环部分的位数)
例:
0.020101010101... 就是
0101-02/999900=99/999900=1/10100

设A=0.111111……,于是有10A=1.111111……
10A-A=9A=1,A=1/9(数位无限嘛!!)
一般方法,
a.bBBBBB……(B为循环节),N为B与b的数字数
则有a.BBBBB……=a.b+B/(10^N-1)
追问
谢谢,但还是不会
追答

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式