BC=a,CA=b,AB=c,ab=bc=ca,证明三角形ABC为正三角形(其中的字母均为向量)?

 我来答
新科技17
2022-10-02 · TA获得超过5912个赞
知道小有建树答主
回答量:355
采纳率:100%
帮助的人:75.5万
展开全部
ab=bc=ca
abc/c=abc/a=abc/b
1/c=1/a=1/b
c=a=b
三角形ABC为正三角形,4,这个很简单拉,ab=bc你的意思肯定是点乘,那么就是说a和c在b上的投影相等,因此B点在矢量b的中垂线上,因此|BC|=|AB|
同理,|AC|=|AB|,等边,2,因为对向量:
ab=-|a|*|b|*cos 所以(下面的a,b,c为长度):
ab*(a*a+b*b-c*c)/2ab=bc*(b*b+c*c-a*a)/2bc=ca*(c*c+a*a-b*b)/2ca
从而 a*a+b*b-c*c=b*b+c*c-a*a=c*c+a*a-b*b
所以 a*a=b*b=c*c
所以 a=b=c,1,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式