求不定积分∫1/[1+e^x]^(1/2)dx求高手解题要步骤谢谢 20
d(e^x+1)^1/2=e^x/(2*(e^x+1)^1/2)
原式=∫(1/(e^x+1)^1/2)dx
=2*∫(1/(e^x+1)^1/2)*(e^x+1)^(1/2)/e^x)d(e^x+1)^1/2
=2∫1/e^xd(e^x+1)^1/2
令u=(e^x+1)^1/2
原式=2∫1/(u^2-1)du
=∫1/(u-1)-1/(u+1)du
=In|u-1|-In|u+1|+C
=In|((e^x+1)^1/2-1)/((e^x+1)^1/2+1)|+C
扩展资料:
不定积分方法
一、第一类换元法(即凑微分法)
通过凑微分,最后依托于某个积分公式。进而求得原不定积分。
二、注:第二类换元法的变换式必须可逆,并且在相应区间上是单调的。
第二类换元法经常用于消去被积函数中的根式。当被积函数是次数很高的二项式的时候,为了避免繁琐的展开式,有时也可以使用第二类换元法求解。常用的换元手段有两种:
1、 根式代换法,
2、 三角代换法。
在实际应用中,代换法最常见的是链式法则,而往往用此代替前面所说的换元。
链式法则是一种最有效的微分方法,自然也是最有效的积分方法,下面介绍链式法则在积分中的应用:
链式法则:
我们在写这个公式时,常常习惯用u来代替g,即:
如果换一种写法,就是让:
就可得:
这样就可以直接将dx消掉,走了一个捷径。
令t=[1+e^x]^(1/2),则x=ln(t²-1),dx=2t/(t²-1)dt
原式=∫(1/t)*[2t/(t²-1)]dt
=∫2/(t²-1)dt
=∫[1/(t-1) -1/(t+1)]dt
=ln(t-1) -ln(t+1)+C
=...
原式=∫(1/(e^x+1)^1/2)dx
=2*∫(1/(e^x+1)^1/2)*(e^x+1)^(1/2)/e^x)d(e^x+1)^1/2
=2∫1/e^xd(e^x+1)^1/2
令u=(e^x+1)^1/2
原式=2∫1/(u^2-1)du
=∫1/(u-1)-1/(u+1)du
=In|u-1|-In|u+1|+C
=In|((e^x+1)^1/2-1)/((e^x+1)^1/2+1)|+C