线性代数有什么学习技巧么?
3个回答
推荐于2018-04-07 · 知道合伙人人力资源行家
518姚峰峰
知道合伙人人力资源行家
向TA提问 私信TA
知道合伙人人力资源行家
采纳数:50865
获赞数:564213
大学班长,中共党员。一次性通过英语四六级及计算机二级,现任公司综合办主任。为百度金榜题名时团队团长。
向TA提问 私信TA
关注
展开全部
一、线性代数(Linear Algebra)是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。线性代数是理工类、经管类数学课程的重要内容。在考研中的比重一般占到22%左右。
二、技巧及方法
1、注重对基本概念的理解与把握,正确熟练运用基本方法及基本运算。
线性代数的概念很多,重要的有:
代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。
往年常有考生没有准确把握住概念的内涵,也没有注意相关概念之间的区别与联系,导致做题时出现错误。
例如,矩阵A=(α1,α2,…,αm)与B=(β1,β2…,βm)等价,意味着经过初等变换可由A得到B,要做到这一点,关键是看秩r(A)与r(B)是否相等,而向量组α1,α2,…αm与β1,β2,…βm等价,说明这两个向量组可以互相线性表出,因而它们有相同的秩,但是向量组有相同的秩时,并不能保证它们必能互相线性表现,也就得不出向量组等价的信息,因此,由向量组α1,α2,…αm与β1,β2,…βm等价,可知矩阵A=(α1,α2,…αm)与B=(β1,β2,…βm)等价,但矩阵A与B等价并不能保证这两个向量组等价。
又如,实对称矩阵A与B合同,即存在可逆矩阵C使CTAC=B,要实现这一点,关键是二次型xTAx与xTBx的正、负惯性指数是否相同,而A与B相似是指有可逆矩阵P使P-1AP=B成立,进而知A与B有相同的特征值,如果特征值相同可知正、负惯性指数相同,但正负惯性指数相同时,并不能保证特征值相同,因此,实对称矩阵A~BAB,即相似是合同的充分条件。
线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有:
行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。
2、注重知识点的衔接与转换,知识要成网,努力提高综合分析能力。
线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,复习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。
例如:设A是m×n矩阵,B是n×s矩阵,且AB=0,那么用分块矩阵可知B的列向量都是齐次方程组Ax=0的解,再根据基础解系的理论以及矩阵的秩与向量组秩的关系,可以有
r(B)≤n-r(A)即r(A)+r(B)≤n
进而可求矩阵A或B中的一些参数
再如,若A是n阶矩阵可以相似对角化,那么,用分块矩阵处理P-1AP=∧可知A有n个线性无关的特征向量,P就是由A的线性无关的特征向量所构成,再由特征向量与基础解系间的联系可知此时若λi是ni重特征值,则齐次方程组(λiE-A)x=0的基础解系由ni个解向量组成,进而可知秩r(λiE-A)=n-ni,那么,如果A不能相似对角化,则A的特征值必有重根且有特征值λi使秩r(λiE-A)<n-ni,若A是实对称矩阵,则因A必能相似对角化而知对每个特征值λi必有r(λiE-A)=n-ni,此时还可以利用正交性通过正交矩阵来实现相似对角化。
又比如,对于n阶行列式我们知道:
若|A|=0,则Ax=0必有非零解,而Ax=b没有惟一解(可能有无穷多解,也可能无解),而当|A|≠0时,可用克莱姆法则求Ax=b的惟一解;
可用|A|证明矩阵A是否可逆,并在可逆时通过伴随矩阵来求A-1;
对于n个n维向量α1,α2,…αn可以利用行列式|A|=|α1α2…αn|是否为零来判断向量组的线性相关性;
矩阵A的秩r(A)是用A中非零子式的最高阶数来定义的,若r(A)<r,则A中r阶子式全为0;
求矩阵A的特征值,可以通过计算行列式|λE-A|,若λ=λ0是A的特征值,则行列式|λ0E-A|=0;
判断二次型xTAx的正定性,可以用顺序主子式全大于零。
凡此种种,正是因为线性代数各知识点之间有着千丝万缕的联系,代数题的综合性与灵活性就较大,同学们整理时要注重串联、衔接与转换。
3、注重逻辑性与叙述表述
线性代数对于抽象性与逻辑性有较高的要求,通过证明题可以了解考生对数学主要原理、定理的理解与掌握程度,考查考生的抽象思维能力、逻辑推理能力。大家复习整理时,应当搞清公式、定理成立的条件,不能张冠李戴,同时还应注意语言的叙述表达应准确、简明。
二、技巧及方法
1、注重对基本概念的理解与把握,正确熟练运用基本方法及基本运算。
线性代数的概念很多,重要的有:
代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。
往年常有考生没有准确把握住概念的内涵,也没有注意相关概念之间的区别与联系,导致做题时出现错误。
例如,矩阵A=(α1,α2,…,αm)与B=(β1,β2…,βm)等价,意味着经过初等变换可由A得到B,要做到这一点,关键是看秩r(A)与r(B)是否相等,而向量组α1,α2,…αm与β1,β2,…βm等价,说明这两个向量组可以互相线性表出,因而它们有相同的秩,但是向量组有相同的秩时,并不能保证它们必能互相线性表现,也就得不出向量组等价的信息,因此,由向量组α1,α2,…αm与β1,β2,…βm等价,可知矩阵A=(α1,α2,…αm)与B=(β1,β2,…βm)等价,但矩阵A与B等价并不能保证这两个向量组等价。
又如,实对称矩阵A与B合同,即存在可逆矩阵C使CTAC=B,要实现这一点,关键是二次型xTAx与xTBx的正、负惯性指数是否相同,而A与B相似是指有可逆矩阵P使P-1AP=B成立,进而知A与B有相同的特征值,如果特征值相同可知正、负惯性指数相同,但正负惯性指数相同时,并不能保证特征值相同,因此,实对称矩阵A~BAB,即相似是合同的充分条件。
线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有:
行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。
2、注重知识点的衔接与转换,知识要成网,努力提高综合分析能力。
线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,复习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。
例如:设A是m×n矩阵,B是n×s矩阵,且AB=0,那么用分块矩阵可知B的列向量都是齐次方程组Ax=0的解,再根据基础解系的理论以及矩阵的秩与向量组秩的关系,可以有
r(B)≤n-r(A)即r(A)+r(B)≤n
进而可求矩阵A或B中的一些参数
再如,若A是n阶矩阵可以相似对角化,那么,用分块矩阵处理P-1AP=∧可知A有n个线性无关的特征向量,P就是由A的线性无关的特征向量所构成,再由特征向量与基础解系间的联系可知此时若λi是ni重特征值,则齐次方程组(λiE-A)x=0的基础解系由ni个解向量组成,进而可知秩r(λiE-A)=n-ni,那么,如果A不能相似对角化,则A的特征值必有重根且有特征值λi使秩r(λiE-A)<n-ni,若A是实对称矩阵,则因A必能相似对角化而知对每个特征值λi必有r(λiE-A)=n-ni,此时还可以利用正交性通过正交矩阵来实现相似对角化。
又比如,对于n阶行列式我们知道:
若|A|=0,则Ax=0必有非零解,而Ax=b没有惟一解(可能有无穷多解,也可能无解),而当|A|≠0时,可用克莱姆法则求Ax=b的惟一解;
可用|A|证明矩阵A是否可逆,并在可逆时通过伴随矩阵来求A-1;
对于n个n维向量α1,α2,…αn可以利用行列式|A|=|α1α2…αn|是否为零来判断向量组的线性相关性;
矩阵A的秩r(A)是用A中非零子式的最高阶数来定义的,若r(A)<r,则A中r阶子式全为0;
求矩阵A的特征值,可以通过计算行列式|λE-A|,若λ=λ0是A的特征值,则行列式|λ0E-A|=0;
判断二次型xTAx的正定性,可以用顺序主子式全大于零。
凡此种种,正是因为线性代数各知识点之间有着千丝万缕的联系,代数题的综合性与灵活性就较大,同学们整理时要注重串联、衔接与转换。
3、注重逻辑性与叙述表述
线性代数对于抽象性与逻辑性有较高的要求,通过证明题可以了解考生对数学主要原理、定理的理解与掌握程度,考查考生的抽象思维能力、逻辑推理能力。大家复习整理时,应当搞清公式、定理成立的条件,不能张冠李戴,同时还应注意语言的叙述表达应准确、简明。
展开全部
我个人让为,先做计算题,填空题,然后证明题,选择题等(一定要坚持先易后难的原则,一定要。旁边有某些同志说:“这些都是屁话,我们都知的快快转入正题吧!”)
把选择题第8题拉出来让大家看看
n(n>1)阶实对矩阵A是正定矩阵的充份必要条件是()
A.A是正定二次型f(x)=x(A)x的矩阵
B.A是各阶顺序主子式均大于等于零(书本的p231定5.9知,大于零就可以了,明显也是错的)
C.二次型f(x)=xTAx的负惯性指数为零
D.存在n阶矩阵C,使得A=CTC(由书本的P230知,存在非奇异N阶矩阵C,使A=CTC)很明显,这个选择是错了)
各位学友在做选择题时要仔细呀!
证明题
先讲1999年下半年
设A,B,C均为n阶矩阵,若ABC=I,这里I为单位矩阵,求证:B为可逆矩阵,且写出的逆矩阵?
证的过程:己知ABC=I,|ABC|=|I|不等于零,|A|*|B|*|C|不等于零,得出|B|不等于零。所以B是可逆矩阵。
求其逆矩阵,ABC=I,两边同时右乘C-1得AB=C-1,接下来左乘以A-1得B=A-1C-1,最后BC=A-1,BCA=I,于是得B-1=CA(不知各位学友有没有更简便的方法谢谢告之)
对这题做后的心得,本人认为一定要记得,a逆阵可逆的充分必要条件是行列式|a|不等零(切记,还有如ab=i,那么a-1=b)
对了还有,在求解逆矩阵,最简单方法是用初等行变换
公式法吗!容易出错,只适合求解比较特殊的
下面这些是相关的证明题
设B矩阵可逆,A矩阵与B矩阵同阶。且满足A2+AB+B2=O,证明A和A+B都是可逆矩阵?(相信大家都能做出)
己知i+ab可逆,试证I+BA也可逆?
接下来看看1999年上半年的
设n阶方阵A与B相似,证明:A和B有相同的特征多项式?
应搞清楚下面的概念
什么是特征多项式呢(1)
什么是特征值呢(2)
什么还有特征向量(3)
什么是相似矩阵(4)
λI-A称为A的特征矩阵;|λI-A|称为A的特征多项式;|λI-A|=0称为A的特征矩阵,而由些求出的全部根,即为A的全部特征值。
对每一个求出特征值λ,求出齐次方程组(λI-A)x=o的基础解是&1,&2,&3...&s,则k1&1+k2&2+...ks&s即是A对应于 λ的全部特征向量(其中,k1...ks不全为零)
相似矩阵:设A,B都是n阶方阵,若存在n阶可逆阵p,使得p-1ap=b,则称A相似于B,记为A~B(相拟矩阵有相同的行列式,相同的秩,相同的特征值)
我觉得有这么一题使终我还是一知半解的,拉出来让大家看看:
设A为4阶方阵,A*为A的伴随矩阵,若|A|=3,则|A*|=?,|2A*|=?
这题答案是27,432
怎么算的呢?这个具体我也不太清楚,我是用自己的方法,|A|N-1=|A*|,这个N代表多少阶,如是4阶那么3^3=27,后面那个,切记:把2提出行列式以外,看A是几阶行列式,4阶就提4次,2^4*3^3=432(可能书上不是这样的,我只是根据其习题答案推论出来的)
应注意的问题:区为行列式和矩阵之间的区别,特别是用一个不为零的数K乘以行列式或矩阵,前者只是乘以某一行或列,后者则是每一个元素都要乘!
很容易搞不零清的:线性相关或无关和什么情况下线性方程组有解或无解,还有什么极大无关组,基础解系,特征值,多项式,特征向量,相似矩阵有哪些性质, 正交矩阵的充分心要条件,二次型化成标准型。
独立思考,思考思考,理清楚结构,弄清楚概念,知道那些概念是为了解决什么问题线性代数中的概念的提出就像给房子添砖添瓦一样,,为了完善理论,同时很必要。
关键是概念要理解。而且要用心,感受到它的美。很多矩阵的题目,到后来会觉得都一个模子出来的,呵呵,希望你好好学。
把选择题第8题拉出来让大家看看
n(n>1)阶实对矩阵A是正定矩阵的充份必要条件是()
A.A是正定二次型f(x)=x(A)x的矩阵
B.A是各阶顺序主子式均大于等于零(书本的p231定5.9知,大于零就可以了,明显也是错的)
C.二次型f(x)=xTAx的负惯性指数为零
D.存在n阶矩阵C,使得A=CTC(由书本的P230知,存在非奇异N阶矩阵C,使A=CTC)很明显,这个选择是错了)
各位学友在做选择题时要仔细呀!
证明题
先讲1999年下半年
设A,B,C均为n阶矩阵,若ABC=I,这里I为单位矩阵,求证:B为可逆矩阵,且写出的逆矩阵?
证的过程:己知ABC=I,|ABC|=|I|不等于零,|A|*|B|*|C|不等于零,得出|B|不等于零。所以B是可逆矩阵。
求其逆矩阵,ABC=I,两边同时右乘C-1得AB=C-1,接下来左乘以A-1得B=A-1C-1,最后BC=A-1,BCA=I,于是得B-1=CA(不知各位学友有没有更简便的方法谢谢告之)
对这题做后的心得,本人认为一定要记得,a逆阵可逆的充分必要条件是行列式|a|不等零(切记,还有如ab=i,那么a-1=b)
对了还有,在求解逆矩阵,最简单方法是用初等行变换
公式法吗!容易出错,只适合求解比较特殊的
下面这些是相关的证明题
设B矩阵可逆,A矩阵与B矩阵同阶。且满足A2+AB+B2=O,证明A和A+B都是可逆矩阵?(相信大家都能做出)
己知i+ab可逆,试证I+BA也可逆?
接下来看看1999年上半年的
设n阶方阵A与B相似,证明:A和B有相同的特征多项式?
应搞清楚下面的概念
什么是特征多项式呢(1)
什么是特征值呢(2)
什么还有特征向量(3)
什么是相似矩阵(4)
λI-A称为A的特征矩阵;|λI-A|称为A的特征多项式;|λI-A|=0称为A的特征矩阵,而由些求出的全部根,即为A的全部特征值。
对每一个求出特征值λ,求出齐次方程组(λI-A)x=o的基础解是&1,&2,&3...&s,则k1&1+k2&2+...ks&s即是A对应于 λ的全部特征向量(其中,k1...ks不全为零)
相似矩阵:设A,B都是n阶方阵,若存在n阶可逆阵p,使得p-1ap=b,则称A相似于B,记为A~B(相拟矩阵有相同的行列式,相同的秩,相同的特征值)
我觉得有这么一题使终我还是一知半解的,拉出来让大家看看:
设A为4阶方阵,A*为A的伴随矩阵,若|A|=3,则|A*|=?,|2A*|=?
这题答案是27,432
怎么算的呢?这个具体我也不太清楚,我是用自己的方法,|A|N-1=|A*|,这个N代表多少阶,如是4阶那么3^3=27,后面那个,切记:把2提出行列式以外,看A是几阶行列式,4阶就提4次,2^4*3^3=432(可能书上不是这样的,我只是根据其习题答案推论出来的)
应注意的问题:区为行列式和矩阵之间的区别,特别是用一个不为零的数K乘以行列式或矩阵,前者只是乘以某一行或列,后者则是每一个元素都要乘!
很容易搞不零清的:线性相关或无关和什么情况下线性方程组有解或无解,还有什么极大无关组,基础解系,特征值,多项式,特征向量,相似矩阵有哪些性质, 正交矩阵的充分心要条件,二次型化成标准型。
独立思考,思考思考,理清楚结构,弄清楚概念,知道那些概念是为了解决什么问题线性代数中的概念的提出就像给房子添砖添瓦一样,,为了完善理论,同时很必要。
关键是概念要理解。而且要用心,感受到它的美。很多矩阵的题目,到后来会觉得都一个模子出来的,呵呵,希望你好好学。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2019-10-12
展开全部
多看书,把线代的各个概念都搞清楚,公式背牢,然后做书上的例题,一定要把例题掌握,然后做课后练习。做完这些步骤(一定要确保认真),期末考试完全够用了。如果有不会的题目,可以上大学数学app,上面有各种教材例题和课后题的视频课,听老师的讲解,更容易掌握知识。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询