一阶微分方程通解形式是什么?

 我来答
白雪忘冬
高粉答主

2022-12-31 · 在我的情感世界留下一方美好的文字
白雪忘冬
采纳数:1007 获赞数:376576

向TA提问 私信TA
展开全部

1、对于一阶齐次线性微分方程:

其通解形式为:

其中C为常数,由函数的初始条件决定。

2、对于一阶非齐次线性微分方程:

其对应齐次方程:

解为:

令C=u(x),得:

带入原方程得:

对u’(x)积分得u(x)并带入得其通解形式为:

扩展资料

主要思想:

数学上,分离变量法是一种解析常微分方程或偏微分方程的方法。使用这方法,可以借代数来将方程式重新编排,让方程式的一部分只含有一个变量,而剩余部分则跟此变量无关。这样,隔离出的两个部分的值,都分别等于常数,而两个部分的值的代数和等于零。 

利用高数知识、级数求解知识,以及其他巧妙的方法,求出各个方程的通解。最后将这些通解“组装起来”。分离变量法是求解波动方程初边值问题的一种常用方法。

参考资料来源:百度百科-一阶线性微分方程

十全秀才95
2023-08-04 · TA获得超过431个赞
知道大有可为答主
回答量:7615
采纳率:94%
帮助的人:245万
展开全部
解:请把具体题目发过来,举例子,解微分方程为dy/dx+(1+xy³)/(1+x³y)=0,(1+x³y)dy+(1+xy³)dx=0,dy+x³ydy+dx+xy³dx=0,dy+dx+x³ydy+y³xdx=0,d(x+y)+x³y³(dy/y²+dx/x²)=0,d(x+y)-x³y³(-dy/y²-dx/x²)=0,d(x+y)=x³y³d(1/y+1/x),d(x+y)=x³y³d[(x+y)/xy];设x+y=u,xy=v,方程化为du=v³d(u/v),再设u=zv,方程化为d(zv)=v³dz,zdv+vdz=v³dz,zdv=(v³-v)dz,dv/(v³-v)=dz/z,vdv/(v²-1)-dv/v=dz/z,0.5ln|v²-1|-ln|v|=ln|z|+0.5ln|a|(a为任意非零常数),ln|v²-1|=ln|av²z²|,v²-1=av²z²,有v²-1=au²,微分方程的解为x²y²-1=a(x+y)²请参考
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式