设A是n阶实对称矩阵,证明A是正定矩阵的充分必要条件是A的特征值都大于0 我来答 1个回答 #热议# 海关有哪些禁运商品?查到后怎么办? 大沈他次苹0B 2022-08-07 · TA获得超过7338个赞 知道大有可为答主 回答量:3059 采纳率:100% 帮助的人:179万 我也去答题访问个人页 关注 展开全部 证: A是n阶实对称矩阵, 则存在正交矩阵P, P'=P^-1满足: P'AP = diag(a1,a2,...,an). 其中a1,a2,...,an是A的全部特征值则A对应的二次型为:f = X'AX 令 X=PY 得f = Y'P' APY = Y'diag(a1,a2,...,an)Y = a1y1^2+...+a... 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 为你推荐: