幂指函数求积分?比如y=x^x,不一定要求不定积分,定积分的求法也行,比如从0积到1。 100

现有的积分公式是不是有些匮乏呢?... 现有的积分公式是不是有些匮乏呢? 展开
 我来答
探花As
2012-11-16 · TA获得超过9663个赞
知道大有可为答主
回答量:2656
采纳率:77%
帮助的人:1118万
展开全部
y=x^x的原函数应该无法表示为初等函数。至于从0到1的定积分,可以用级数的方法来做。x^x=e^(xlnx)=1+(xlnx)+(xlnx)^2/2!+(xlnx)^3/3!+……逐项积分得∫(0~1)x^xdx=∫(0~1)dx+∫(0~1)xlnxdx+∫(0~1)(xlnx)^2/2!dx+∫(0~1)(xlnx)^3/3!dx+……=1-1/2^2+1/3^3-1/4^4+……
许多函数的不定积分都是求不出来的,即无法表示为初等函数。
追问
你会泰勒展开吗?x0你打算取谁呢?
你来找个规律:1,2,3,8,10,54,-42
你能写出下一项吗?
那你怎么用泰勒展开呢?
定积分为什么积不出来呢?
难道定积分只有求原函数这一种不太实用的办法吗?
我们已经证明了连续函数都可积,那么为什么无法求呢?
即使无法用初等函数表示,那超越函数我们又知道多少呢?
这些问题怎么解决呢?
追答
连续函数都可积,但初等函数的原函数不一定是初等函数。实际上,很多初等函数的原函数都无法用初等函数表示,比如e^(-x^2)、sinx/x等(这些函数理论上已经证明其原函数不是初等函数)。但求定积分不一定要求被积函数原函数,可以采用别的方法,或者可以近似计算。
斯文人1990
2012-11-16 · TA获得超过643个赞
知道小有建树答主
回答量:644
采纳率:0%
帮助的人:484万
展开全部
求原函数
F(x)是f(x)的原函数
f(x)对0到1积分值就是F(1)-F(0)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
liuaibo2
2012-11-16 · TA获得超过599个赞
知道小有建树答主
回答量:605
采纳率:0%
帮助的人:139万
展开全部
y=x^x,对y求导,知y‘=x^x,所以y的积分是x^x+C
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式