数列极限的结果为什么是π/2?
1个回答
展开全部
lim(x趋向于正无穷大)arctanx的结果是π/2因为,arctanx与tanx互为反函数,一个的定义域是另一个的值域。
可以先画出tanx的图像,然后,就可以判断出来。或者,可以直接arctanx的图像。。arctanx的值域是-π/2~π/2。
极限是高等数学中非常重要的概念,极限的思想贯穿高等数学始终。连续的定义、导数的定义、定积分的概念,还有无穷级数的敛散性等,都要用到极限的思想,因此可以说极限的思想是高等数学的灵魂。
数列极限定义
数列极限定义是按一定次序排列的一列数,这一列数叫做数列,如果当n无限增大时,数列{xn}无限接近某个确定的常数A,则称A为数列{xn}的极限。
数列可以看作自变量为正整数的函数,只有当n无限增大时,数列无限接近某个确定的常数A,才能说数列极限是存在的,此时数列收敛于A;否则若数列极限不存在,则称该数列发散。
判断数列极限是否存在,首先可以把数列的前几项写出来,这样有助于我们发现数列变化的规律。当数列极限是无穷大及数列极限不唯一时,都称数列是发散的。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询