显著性差异怎么看?
2024-01-02 · 百度认证:SPSSAU官方账号,优质教育领域创作者
假设检验,我们可以把这个词分为“假设”和“检验”来看。
“假设”这个词带了不确定性,常说假设一个事情发生了就怎么样,就是这个事情可能发生,也可能不发生,所以我们从概率这里说起。
生活中很多事件发生看似是随机的、偶然的,比如你打麻将扔骰子,扔到1就是1,扔到6就是6,但实际上这个事件是服从一定概率分布的——均匀分布:扔到1~6这六个数的概率是一样的,都是六分之一。
均匀分布的特点就是事件的各种情况发生的概率是相等的。这种分布是很简单的。然后现在来说另外一种很常见很重要应用很广泛的分布——正态分布。
正态分布是一种随机变量是具有钟形概率分布的随机变量,许多变量的概率分布都服从正态分布。例如:某地区儿童的发育特征,身高。体重等。在同一条件下,产品的质量以平均质量为中心上下摆动,特别差或者特别好的都是少数,多数处于中间状态,正态分布是最重要的一种连续型分布,有着非常广泛的应用。
“假设”这个词带了不确定性,常说假设一个事情发生了就怎么样,就是这个事情可能发生,也可能不发生,所以我们从概率这里说起。
生活中很多事件发生看似是随机的、偶然的,比如你打麻将扔骰子,扔到1就是1,扔到6就是6,但实际上这个事件是服从一定概率分布的——均匀分布:扔到1~6这六个数的概率是一样的,都是六分之一。
均匀分布的特点就是事件的各种情况发生的概率是相等的。这种分布是很简单的。然后现在来说另外一种很常见很重要应用很广泛的分布——正态分布。
正态分布是一种随机变量是具有钟形概率分布的随机变量,许多变量的概率分布都服从正态分布。例如:某地区儿童的发育特征,身高。体重等。在同一条件下,产品的质量以平均质量为中心上下摆动,特别差或者特别好的都是少数,多数处于中间状态,正态分布是最重要的一种连续型分布,有着非常广泛的应用。
显著性水平是估计总体参数落在某一区间内,可能犯错误的概率,用α表示。显著性水平是假设检验中的一个概念,是指当原假设为正确时人们却把它拒绝了的概率或风险。它是公认的小概率事件的概率值,必须在每一次统计检验之前确定,通常取α=0.05或α=0.01。这表明,当作出接受原假设的决定时,其正确的可能性(概率)为95%或99%。
p值,也称显著性值或者Sig.值,用于描述某件事情发生的概率情况,其取值范围是0~1,不包括0和1,通常情况下,一般有三个判断标准一个是0.01、0.05以及0.1。在绝大多数情况下,如果p值小于0.01,则说明至少有99%的把握,如果p值小于0.05(且大于或等于0.01),则说明至少有95%的把握,如果p值小于0.1(且大于或等于0.05),则说明至少有90%的把握。
在统计语言表达上,如果p值小于0.01,则称作0.01水平显著,例如,研究人员分析X对Y是否存在影响关系时,如果X对应的p值为0.00(由于小数位精度要求,展示为0.00),则说明X对Y存在影响关系这件事至少有99%的把握,统计语言描述为X在0.01水平上呈现显著性。
如果P值小于0.05(且大于或等于0.01),则称作在0.05水平上显著。例如,研究人员在研究不同性别人群的购买意愿是否有明显的差异时,如果对应的P值为0.01,则说明在0.05水平上呈现出显著性差异,即说明不同性别人群的购买意愿有着明显的差异,而且对此类差异至少有95%的把握。绝大多数研究希望P值小于0.05,即说明研究对象之间有影响、有关系或有差异等。但个别地方需要P值大于0.05,如方差齐性检验时需要P值大于0.05(此处P值大于0.05说明方差不相等)。
SPSSAU操作计算
2024-09-05 广告
在作结论时,应确实描述方向性(例如显著大于或显著小于)。sig值通常用 P>0.05 表示差异性不显著;0.01<P<0.05 表示差异性显著;P<0.01表示差异性极显著。
显著性差异是统计学(Statistics)上对数据差异性的评价。通常情况下,实验结果达到0.05水平或0.01水平,才可以说数据之间具备了差异显著或是极显著。
当数据之间具有了显著性差异,就说明参与比对的数据不是来自于同一总体(Population),而是来自于具有差异的两个不同总体,这种差异可能因参与比对的数据是来自不同实验对象的。
一些一般能力测验中,大学学历被试组的成绩与小学学历被试组会有显著性差异。也可能来自于实验处理对实验对象造成了根本性状改变,因而前测后测的数据会有显著性差异。
扩展资料:
显著性检验(significance test)就是事先对总体(随机变量)的参数或总体分布形式做出一个假设,然后利用样本信息来判断这个假设(备择假设)是否合理,即判断总体的真实情况与原假设是否有显著性差异。
或者说,显著性检验要判断样本与我们对总体所做的假设之间的差异是纯属机会变异,还是由我们所做的假设与总体真实情况之间不一致所引起的。 显著性检验是针对我们对总体所做的假设做检验,其原理就是“小概率事件实际不可能性原理”来接受或否定假设。
显著性检验即用于实验处理组与对照组或两种不同处理的效应之间是否有差异,以及这种差异是否显著的方法。
常把一个要检验的假设记作H0,称为原假设(或零假设) (null hypothesis) ,与H0对立的假设记作H1,称为备择假设(alternative hypothesis) 。
⑴ 在原假设为真时,决定放弃原假设,称为第一类错误,其出现的概率通常记作α;
⑵ 在原假设不真时,决定不放弃原假设,称为第二类错误,其出现的概率通常记作β
(3)α+β 不一定等于1。
通常只限定犯第一类错误的最大概率α, 不考虑犯第二类错误的概率β。这样的假设 检验又称为显著性检验,概率α称为显著性水平。
最常用的α值为0.01、0.05、0.10等。一般情况下,根据研究的问题,如果放弃真假设损失大,为减少这类错误,α取值小些 ,反之,α取值大些。
参考资料来源:百度百科-显著性差异