泰勒公式求高阶导数
1个回答
展开全部
^利用sinx的Taylor展式sinx=x-x^3/3!+x^5/5!-x^7/7!+...,故
f(x)=x^4-x^6/3!+x^8/5!-x^10/7!+...
由此知道f^(6)(0)/6!=-1/3!,故
f^(6)(0)=-6!/3!=-120。
Taylor展式有唯一性:其表达式必定是这样的:
f(x)=f(0)+f'(0)x+f''(0)x^2/2!+....+f^(n)(0)x^n/n!+...
即必有x^n的系数时f^(n)(0)/n!。
扩展资料:
高阶导数计算就是连续进行一阶导数的计算。因此只需根据一阶导数计算规则逐阶求导就可以了,但从实际计算角度看,却存在两个方面的问题:
(1)一是对抽象函数高阶导数计算,随着求导次数的增加,中间变量的出现次数会增多,需注意识别和区分各阶求导过程中的中间变量。
(2)二是逐阶求导对求导次数不高时是可行的,当求导次数较高或求任意阶导数时,逐阶求导实际是行不通的,此时需研究专门的方法。
参考资料来源:百度百科-高阶导数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询