设f(x)是定义在R上的函数,且对任何x,y∈R,都有f(x+y)=e^xf(y)+e^yf(x).
设f(x)是定义在R上的函数,且对任何x,y∈R,都有f(x+y)=e^xf(y)+e^yf(x).若f'(0)=e,求f(x)...
设f(x)是定义在R上的函数,且对任何x,y∈R,都有f(x+y)=e^xf(y)+e^yf(x).若f'(0)=e,求f(x)
展开
3个回答
2012-11-16
展开全部
令x=y=0得f(0)=0
f(x+h)=e^x×f(h)+e^h×f(x)
f(x+h)-f(x)=(e^h-1)×f(x)+e^x×f(h)=(e^h-1)×f(x)+e^x×(f(h)-f(0))
f'(x)
=lim(h→0) [f(x+h)-f(x)]/h
=lim(h→0) (e^h-1)/h×f(x)+lim(h→0) e^x×(f(h)-f(0))/h
=f(x)+e^x×f'(0)
=f(x)+2e^x
此微分方程是一阶线性方程,套用通解公式得f(x)=Ce^x+2(x+1)e^x,C是任意常数. 由f(0)=0得C=-2
所以f(x)=2xe^x
f(x+h)=e^x×f(h)+e^h×f(x)
f(x+h)-f(x)=(e^h-1)×f(x)+e^x×f(h)=(e^h-1)×f(x)+e^x×(f(h)-f(0))
f'(x)
=lim(h→0) [f(x+h)-f(x)]/h
=lim(h→0) (e^h-1)/h×f(x)+lim(h→0) e^x×(f(h)-f(0))/h
=f(x)+e^x×f'(0)
=f(x)+2e^x
此微分方程是一阶线性方程,套用通解公式得f(x)=Ce^x+2(x+1)e^x,C是任意常数. 由f(0)=0得C=-2
所以f(x)=2xe^x
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |