1/2+3/4+7/8+15/16+31/32+63/64+127/128+255/256+511/512+1024/1023=多少 ·写出简便方法·
1/2+3/4+7/8+15/16+31/32+63/64+127/128+255/256+511/512+1024/1023=多少 ·写出简便方法·
每一项可分解为(2的n次-1)/2的n次=1-1/2的n次 n=1,2.....10共十项然后合在一起算就行了。原式=10-()括号内的计算方法:分子分母同时乘以2的(n-1)次项,使得分母全部变为2的10此方然后进行计算得到1023/1024
最后
原式=10-1023/1024=9又1/1024
1/2+3/4+7/8+15/16+31/32+63/34+127/128+255/256+511/512+1023/1024
1/2+3/4+7/8+15/16+31/32+63/34+127/128+255/256+511/512+1023/1024 =(1-1/2)+(1-1/4)+(1-1/8)+(1-1/16)+(1-1/32)+(1-1/64)+(1-1/128)+(1-1/256)+(1-1/512)+(1-1/1024) =10-(1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256+1/5121023/+1/1024) =10-1023/1024 =9又1/1024
计算:1/2+3/4+7/8+15/16+31/32+63/34+127/128+255/256+511/512+1023/1024
每一项可分解为(2的n次-1)/2的n次=1-1/2的n次 n=1,2.....10共十项然后合在一起算就行了。原式=10-()括号内的计算方法:分子分母同时乘以2的(n-1)次项,使得分母全部变为2的10此方然后进行计算得到1023/1024 最后 原式=10-1023/1024=9又1/1024
求采纳
1/2+3/4+7/8+15/16+31/32+63/64+127/128+255/256+511/512如何计算
设
a=1/2+3/4+7/8+15/16+31/32+63/64+127/128+255/256
b=1/2+1/4+1/8+1/16+ 1/32+ 1/64+ 1/128+ 1/256
那么a+b=8
b+1/256=1/2+1/4+1/8+1/16+ 1/32+ 1/64+ 1/128+ (1/256+1/256)
=1/2+1/4+1/8+1/16+ 1/32+ 1/64+( 1/128+ 1/128)
=1/2+1/4+1/8+1/16+ 1/32+ (1/64+ 1/64)
=……
=1
所以b=1-1/256
a=8-b=8-(1-1/256)
=7+1/256
或者
an=(2^n-1)/2^n=1-1/2^n
Sn=8*1-(1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256)
=8-0.5(1-0.5^8)/1-0.5
=8-255/256
=1793/256
1/2 +3/4+7/8+15/16+31/32+63/64+127/128+255/256
1/2 +3/4+7/8+15/16+31/32+63/64+127/128+255/256
=1-1/2 +1-1/4+1-1/8+1-1/16+1-1/32+1-1/64+1-1/128+1-1/256
=8-(1/2 +1/4+1/8+1/16+1/32+1/64+1/128+1/256)
=8-(1/2 +1/4+1/8+1/16+1/32+1/64+1/128+1/256+1/256-1/256)
=8-(1/2 +1/4+1/8+1/16+1/32+1/64+1/128+1/128-1/256)
=8-(1/2 +1/4+1/8+1/16+1/32+1/64+1/64-1/256)
=8-(1/2 +1/4+1/8+1/16+1/32+1/32-1/256)
=8-(1/2 +1/4+1/8+1/16+1/16-1/256)
=8-(1/2 +1/4+1/8+1/8-1/256)
=8-(1/2 +1/4+1/4-1/256)
=8-(1/2 +1/2-1/256)
=8-(1-1/256)
=8-1 +1/256)
=7又1/256
1/2+3/4+7/8+15/16+31/32+63/64+127/128=? 分数简便运算,急!
等于(1-1/2)+(1-1/4)+(1-1/8)+(1-1/16)+(1-1/32)+(1-1/64)+(1-1/128)
=7-(1/2+1/4+1/8+1/16+1/32+1/64+1/128)
=7-127/128
=6又1/128
1/2+3/4+7/8+15/16+31/32=63/64+127/128+255/256 要过程喔
解:原式=1-1/2+1-1/4+1-1/8+1-1/16+1-1/32+1-1/64+1-1/128+1-1/256
=8-(1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256)
期中1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256
=1/2+1/4+1/8+1/16+1/32+1/64+1/128+(1/256+1/256)-1/256
=1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/128-1/256
……
=1-1/256
所以原式=8-(1-1/256)=7+1/256
1/2+3/4+7/8+15/16+31/32+63/64+127/128=? 要用简便算法
1/2+3/4+7/8+15/16+31/32+63/64+127/128
=1*64/128 + 3*32/128 + 7*16/128 + 15*8/128 + 31*4/128 + 63*2/128 + 127/128
=(64+69+112+120+124+126+127)/128
=752/128
=5.875
简便计算1/2+3/4+7/8+15/16+31/32+........+127/128+255/256
设
a=1/2+3/4+7/8+15/16+31/32+63/64+127/128+255/256
b=1/2+1/4+1/8+1/16+ 1/32+ 1/64+ 1/128+ 1/256
那么a+b=8
b+1/256=1/2+1/4+1/8+1/16+ 1/32+ 1/64+ 1/128+ (1/256+1/256)
=1/2+1/4+1/8+1/16+ 1/32+ 1/64+( 1/128+ 1/128)
=1/2+1/4+1/8+1/16+ 1/32+ (1/64+ 1/64)
=……
=1
所以b=1-1/256
a=8-b=8-(1-1/256)
=7+1/256