高等数学 拐点 图中37(2) 最好用图片格式回答
1个回答
展开全部
37 (2) x'<t> = -2a(csct)^2, y'<t> = 2asintcost
dy/dx = 2asintcost/[ -2a(csct)^2] = -cost(sint)^3
d^2y/dx^2 = (d/dt) [-cost(sint)^3]/x'<t>
= [(sint)^4 - 3(cost)^2(sint)^2]/[ -2a(csct)^2]
= -[1/(2a)](sint)^4[(sint)^2-3(cost)^2]
令 d^2y/dx^2 = 0, 得 i = kπ, i = (k±1/3)π
得拐点 (2a/√3, 3a/2), (-2a/√3, 3a/2)
dy/dx = 2asintcost/[ -2a(csct)^2] = -cost(sint)^3
d^2y/dx^2 = (d/dt) [-cost(sint)^3]/x'<t>
= [(sint)^4 - 3(cost)^2(sint)^2]/[ -2a(csct)^2]
= -[1/(2a)](sint)^4[(sint)^2-3(cost)^2]
令 d^2y/dx^2 = 0, 得 i = kπ, i = (k±1/3)π
得拐点 (2a/√3, 3a/2), (-2a/√3, 3a/2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询