计算:(lg2)2+3lg5+lg5(1+lg2)+lg8+log2(5)log5(4)
1个回答
展开全部
原式
= (lg2)^2+3lg5+(lg5+lg5lg2)+lg2^3+log2(5)log5(2^2)
= (lg2)^2+lg5lg2+(lg5+3lg5)+3lg2+2log2(5)log5(2)
= (lg2+lg5)lg2+4lg5+3lg2+2(lg5/lg2)(lg2/lg5)
= lg2+3lg2+4lg5+2
= 4(lg2+lg5)+2
= 4+2
= 6
= (lg2)^2+3lg5+(lg5+lg5lg2)+lg2^3+log2(5)log5(2^2)
= (lg2)^2+lg5lg2+(lg5+3lg5)+3lg2+2log2(5)log5(2)
= (lg2+lg5)lg2+4lg5+3lg2+2(lg5/lg2)(lg2/lg5)
= lg2+3lg2+4lg5+2
= 4(lg2+lg5)+2
= 4+2
= 6
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询