
高中物理题,如图所示, ABCDE是由三部分光滑轨道平滑连接在一起组成的,AB为水平轨道, 是半径为
高中物理题,如图所示,ABCDE是由三部分光滑轨道平滑连接在一起组成的,AB为水平轨道,是半径为R的半圆弧轨道,是半径为2R的圆弧轨道,与相切在轨道最高点D,R=0.6m...
高中物理题,如图所示, ABCDE是由三部分光滑轨道平滑连接在一起组成的,AB为水平轨道, 是半径为R的半圆弧轨道,是半径为2R的圆弧轨道,与相切在轨道最高点D,R=0.6m.质量为M=0.99 kg的小物块,静止在AB轨道上,一颗质量为m=0.01kg子弹水平射入物块但未穿出,物块与子弹一起运动,恰能贴着轨道内侧通过最高点从E点飞出.取重力加速度g=10m/s2,求:
(2)子弹击中物块前的速度;
(3)系统损失的机械能 展开
(2)子弹击中物块前的速度;
(3)系统损失的机械能 展开
3个回答
展开全部
(2) 这个,最主要的是要知道临界点,这个题的临界点就是D点,如果通过了D点之后还不掉下去,那么就可以从E点飞出。不掉下去的条件为F离>=G
又D点是两个圆弧相切的点,故在通过D点前后的瞬间,其离心力是不同的,由F离=mv^2/r
当r=2R时,F离比较小,所以临界条件为:mv^2/(2R)>=mg即mv^2>=2mgR
D点出动能最小值为:ED=0.5mv^2=mgR
按照机械能守恒,在B点时的动能EB=ED+mgh=mgR+2mgR=3mgR
vB=根号下(6gR)=6 m/s
按照动量守恒定律,撞击前m弹*v弹=撞击后m总*v
v弹=m总v/m弹=1*6/0.01=600 m/s
(3) 因为运动过程都是光滑的,系统损失的机械能就是在子弹撞入木块时
E损=E弹-E=0.5m弹v弹^2-0.5m总v^2=0.5*0.01*600*600-0.5*1*6*6=1800-18=1782J
又D点是两个圆弧相切的点,故在通过D点前后的瞬间,其离心力是不同的,由F离=mv^2/r
当r=2R时,F离比较小,所以临界条件为:mv^2/(2R)>=mg即mv^2>=2mgR
D点出动能最小值为:ED=0.5mv^2=mgR
按照机械能守恒,在B点时的动能EB=ED+mgh=mgR+2mgR=3mgR
vB=根号下(6gR)=6 m/s
按照动量守恒定律,撞击前m弹*v弹=撞击后m总*v
v弹=m总v/m弹=1*6/0.01=600 m/s
(3) 因为运动过程都是光滑的,系统损失的机械能就是在子弹撞入木块时
E损=E弹-E=0.5m弹v弹^2-0.5m总v^2=0.5*0.01*600*600-0.5*1*6*6=1800-18=1782J
来自:求助得到的回答
展开全部
少打了第一问:(1)物块与子弹一起刚滑上圆弧轨道B点的速度;
答案:(1)6 m/s (2)600 m/s (3)1782 J
解:
(1)研究M、m系统:刚好通过最高点时,由牛顿第二定律知:
(M+m)g=(M+m)VD^2/(2R),解得vD=√(2gR)=2√3 m/s
(注意这里用2R而不是R,因为刚过最高点D后半径增大为2倍,向心力减小为原来的1/2,压力N减小,若取临界则N=0,通过D点之前N一定不为0,不能脱离轨道)
研究M、m系统:由B到D过程,动能定理
-(M+m)g(2R)=0.5(M+m)vB^2-0.5(M+m)vD^2
联立解得,vB=vD=√(6gR)=6 m/s
(2)研究M、m系统:子弹打入木块过程,动量守恒
mv0=(M+m)v1,且AB轨道光滑,v1=vB
解得v0=600 m/s
(3)研究M、m系统:子弹打入木块过程,能量守恒
|ΔE|=0.5mv0^2-0.5(M+m)v1^2=1782 J
答案:(1)6 m/s (2)600 m/s (3)1782 J
解:
(1)研究M、m系统:刚好通过最高点时,由牛顿第二定律知:
(M+m)g=(M+m)VD^2/(2R),解得vD=√(2gR)=2√3 m/s
(注意这里用2R而不是R,因为刚过最高点D后半径增大为2倍,向心力减小为原来的1/2,压力N减小,若取临界则N=0,通过D点之前N一定不为0,不能脱离轨道)
研究M、m系统:由B到D过程,动能定理
-(M+m)g(2R)=0.5(M+m)vB^2-0.5(M+m)vD^2
联立解得,vB=vD=√(6gR)=6 m/s
(2)研究M、m系统:子弹打入木块过程,动量守恒
mv0=(M+m)v1,且AB轨道光滑,v1=vB
解得v0=600 m/s
(3)研究M、m系统:子弹打入木块过程,能量守恒
|ΔE|=0.5mv0^2-0.5(M+m)v1^2=1782 J
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
所以第一步:动量守恒mv1=(m+M)vb 。。。。。。(1)
1/2(m+M)vb2^=(m+M)g2R+1/2(m+M)Vd^2................(2)
(M+m)g=(M+m)V^2/2R..........(3)
联立可解第一问。
二
1/2mV^2—1/2(m+M)Vb^2=能量损失
1/2(m+M)vb2^=(m+M)g2R+1/2(m+M)Vd^2................(2)
(M+m)g=(M+m)V^2/2R..........(3)
联立可解第一问。
二
1/2mV^2—1/2(m+M)Vb^2=能量损失
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询