一道高中函数题已知函数f(x)=1+x-x²/2+x³/3-……+x^2013/2013,g(x)=?

 我来答
完满且闲雅灬抹香鲸P
2022-10-07 · TA获得超过1.7万个赞
知道小有建树答主
回答量:380
采纳率:0%
帮助的人:70.7万
展开全部
答案:10.
f(x)+g(x)=2 ,f(x)的导数f'(x)=1-x+x^2+.+x2012=(1+X^2013)/(1+x)>0
所以 f(x)是增函数,又 f(0)=1,f(-1)=-1/2-1/3-1/4-.-1/20133/2=2+(1/3-1/2)+(1/5-1/4)+.+(1/2013-1/2012)3
所以 g(x)=0的零点区间为:(1,2),且是唯一的零点.
F(x)=f(x+3)g(x-4)的零点即为:f(x+3)=0 或 g(X-4)=0 ===>-1,1,一道高中函数题
已知函数f(x)=1+x-x²/2+x³/3-……+x^2013/2013,g(x)=1-x+x²/2-x³/3+……-x^2013/2013,设F(x)=f(x+3)g(x-4),且函数F(x)的零点在区间【a,b】(a<b,a,b∈Z)上,求b-a的最小值
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式