高等数学第13题做到这里就不会了,求详细解答
1个回答
展开全部
后项 I1= ∫ (x-1)dx/(x^2+x+1)^2 = (1/2)∫ (2x+1-3)dx/(x^2+x+1)^2
= (1/2)∫ d(x^2+x+1)/(x^2+x+1)^2 - (3/2) ∫ dx/(x^2+x+1)^2
= -(1/2)/(x^2+x+1) - (4/√3) ∫ d[(2x+1)/√3]/[1+(1/3)(2x+1)^2]^2
= -(1/2)/(x^2+x+1) - (4/√3) ∫ d[(2x+1)/√3]/[1+(1/3)(2x+1)^2]^2
令 (2x+1)/√3 = tanu,
则 I2 = ∫ (secu)^2du /(secu)^4 = ∫ (cosu)^2du
= (1/2)∫ (1+cos2u)du = (1/2)[u+(1/2)sin2u]
= (1/2)[arctan[(2x+1)/√3]+(√3/2)(2x+1)/(x^2+x+1)]
得 I1= -(1/2)/(x^2+x+1)-(2/√3)[arctan[(2x+1)/√3]+(√3/2)(2x+1)/(x^2+x+1)]+C
= -(1/2)/(x^2+x+1)-(2/√3)arctan[(2x+1)/√3]-(2x+1)/(x^2+x+1)+C
= -(1/2)(4x+3)/(x^2+x+1)-(2/√3)arctan[(2x+1)/√3]+C
= (1/2)∫ d(x^2+x+1)/(x^2+x+1)^2 - (3/2) ∫ dx/(x^2+x+1)^2
= -(1/2)/(x^2+x+1) - (4/√3) ∫ d[(2x+1)/√3]/[1+(1/3)(2x+1)^2]^2
= -(1/2)/(x^2+x+1) - (4/√3) ∫ d[(2x+1)/√3]/[1+(1/3)(2x+1)^2]^2
令 (2x+1)/√3 = tanu,
则 I2 = ∫ (secu)^2du /(secu)^4 = ∫ (cosu)^2du
= (1/2)∫ (1+cos2u)du = (1/2)[u+(1/2)sin2u]
= (1/2)[arctan[(2x+1)/√3]+(√3/2)(2x+1)/(x^2+x+1)]
得 I1= -(1/2)/(x^2+x+1)-(2/√3)[arctan[(2x+1)/√3]+(√3/2)(2x+1)/(x^2+x+1)]+C
= -(1/2)/(x^2+x+1)-(2/√3)arctan[(2x+1)/√3]-(2x+1)/(x^2+x+1)+C
= -(1/2)(4x+3)/(x^2+x+1)-(2/√3)arctan[(2x+1)/√3]+C
追问
之前看完了忘了采纳了,1/2sin2u那里你好像算错了,不过谢谢你的思路,非常感谢!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询