已知数列{an}中a1=1,an+1=3an/an +3,求通项公式
1个回答
展开全部
a(n+1)=3an/(an+3),倒过来得
1/a(n+1)-1/an=1/3
设数列bn=1/an,则数列bn为等差数列,b1=1,公差为1/3,则
Bn=1/an=n/3+2/3=(n+2)/3
所以an=3/(n+2)
1/a(n+1)-1/an=1/3
设数列bn=1/an,则数列bn为等差数列,b1=1,公差为1/3,则
Bn=1/an=n/3+2/3=(n+2)/3
所以an=3/(n+2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询