有界集和闭集的区别

 我来答
妖感肉灵10
2022-12-13 · TA获得超过6.2万个赞
知道顶级答主
回答量:101万
采纳率:99%
帮助的人:2.2亿
展开全部

一、判断符号不同

闭集是两边类似【1,10】;有界集两边是(1,10],[1,10)两种。

二、定义角度不同

闭集是相对于开集而言的,可以联想开区间和闭区间,是一个封闭的集合。
有界集合指的是有界,就是|f(x)|<=M恒定存在,在一个界限内的集合。

三、.举例说明不同

集合 A 是闭集,即 A 的导集与 A 相等。例如,闭区间 [a,b],R,数列 {0,1,1/2,1/3,?} 作成的集合,都是闭集;而有限开区间 (a,b),(0,+∞),{1/n},都不是闭集。

集合 B是有界集 ,即存在常数 M 使任何 E 的元素 x 都满足 |x|<=M。如 [a,b],(a,b),{1/n},{0,1,1/2,1/3,?},等都是有界集;而 R,(0,+∞),都不是有界集。

参考资料

百度百科--闭集

百度百科--有界集

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式