已知三角形ABC,它的三边分别是AB,AC,BC,依据是什么

 我来答
faker1718
2022-10-10 · TA获得超过987个赞
知道小有建树答主
回答量:272
采纳率:100%
帮助的人:52.6万
展开全部
帕普斯的绝妙证明:
等腰三角形的两个底角相等,这是人人皆知的结论.虽然很显而易见,不过我们总是要证明的,中学教材的证明方法,一般是通过做辅助线,通过证明三角形全等而得到角相等:
公元300年左右,著名数学家帕普斯给出了这个问题一个很巧妙的证明,他没有做辅助线:
他是这样证明的:
在△ABC和△ACB中,AB=AC,AC=AB,∠A=∠A.
∴△ABC≌△ACB;(边角边)
所以∠B=∠C;(全等三角形对应角相等)
这个证明方法堪称绝妙.尽管你现在也许还在将信将疑中,但这个方法却是那样的正确无疑.又有谁能想到将一个三角形看成两个重合的三角形呢?
所以:“已知三角形ABC,它的三边分别是AB,AC,BC,依据是什么?”依据就是你的规定.如果你再规定 “三边分别是AB,AC.CB”那就是与之重合的另一个三角形
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式