谁能给我一些关于数学排列组合的题目,有用即可 30

 我来答
晨光熹微555
2016-04-18 · TA获得超过7695个赞
知道大有可为答主
回答量:1224
采纳率:94%
帮助的人:307万
展开全部
例1、五个人排成一排,其中甲不在排头,乙不在排尾,不同的排法有 ( ) A.120种 B.96种 C.78种 D.72种
分析:由题意可先安排甲,并按其分类讨论:1)若甲在末尾,剩下四人可自由排,有A44
=24种排
法;2)若甲在第二,三,四位上,则有3*3*3*2*1=54种排法,由分类计数原理,排法共有24+54=78种,选C。
解排列与组合并存的问题时,一般采用先选(组合)后排(排列)的方法解答。 二、特殊元素与特殊位置优待法
对于有附加条件的排列组合问题,一般采用:先考虑满足特殊的元素和位置,再考虑其它元素和位置。 例2、从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有( )
(A) 280种 (B)240种 (C)180种 (D)96种
分析:由于甲、乙两名志愿者都不能从事翻译工作,所以翻译工作就是“特殊”位置,因此翻译工作
从剩下的四名志愿者中任选一人有14C种不同的选法,再从其余的5人中任选3人从事导游、导购、保洁三项不同的工作有35A种不同的选法,所以不同的选派方案共有1
4C35A=240种,选B。

三、插空法、捆绑法
对于某几个元素不相邻的排列问题,可先将其他元素排好,再将不相邻元素在已排好的元素之间及两端空隙中插入即可。
例3、7人站成一排照相, 若要求甲、乙、丙不相邻,则有多少种不同的排法?
分析: 先将其余四人排好有A44=24种排法,再在这些人之间及两端的5个“空”中选三个位置让甲

2
乙丙插入,则有
C3
5=10
种方法,这样共有24*10=240种不同排法。
对于局部“小整体”的排列问题,可先将局部元素捆绑在一起看作一个元,与其余元素一同排列,然后在进行局部排列。
例4、计划展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且水彩画不放在两端,那么不同的陈列方式有( )
(A) 5544AA (B)554433AAA (C)554413AAA (D)
554422AAA 分析:先把三种不同的画捆在一起,各看成整体,但水彩画不放在两端,则整体有2
2A种不同的排法,
然后对4幅油画和5幅国画内部进行全排,有5544AA种不同的排法,所以不同的陈列方式有5
54422AAA种,
选D。
一、选择题
1.(2010广东卷理)2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有
A. 36种 B. 12种 C. 18种 D. 48种
【解析】分两类:若小张或小赵入选,则有选法243
31212ACC;若小张、小赵都入选,则有选法122322AA,共有选法36种,选A.
2.(2010北京卷文)用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为 ( )
A.8 B.24 C.48 D.120 【答案】C
.w
【解析】本题主要考查排列组合知识以及分步计数原理知识. 属于基础知识、基本运算的考查.
2和4排在末位时,共有1
22A种排法,
其余三位数从余下的四个数中任取三个有3
443224A种排法,
于是由分步计数原理,符合题意的偶数共有22448(个).故选C. 3.(2010北京卷理)用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为( ) A.324 B.328 C.360 D.648 【答案】B
【解析】本题主要考查排列组合知识以及分类计数原理和分步计数原理知识. 属于基础知
识、基本运算的考查
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式