平面几何中的“线面平行”该如何理解和证明?

 我来答
我爱聊生活冷知识
高能答主

2023-01-29 · 我是生活小达人,乐于助人
我爱聊生活冷知识
采纳数:39 获赞数:1306

向TA提问 私信TA
展开全部

性质定理:直线L平行于平面α,平面β经过L且与平面α相交于直线L‘,则L∥L‘;判定定理:直线L‘在平面α上,直线L不在平面α上,且L'∥L,则L∥α。

判定定理、如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行,性质定理、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。

线面平行证明

已知:a∥b,a⊄α,b⊂α,求证:a∥α反证法证明:假设a与α不平行,则它们相交,设交点为A,那么A∈α

∵a∥b,∴A不在b上

在α内过A作c∥b,则a∩c=A

又∵a∥b,b∥c,∴a∥c,与a∩c=A矛盾。

∴假设不成立,a∥α

向量法证明:设a的方向向量为a,b的方向向量为b,面α的法向量为p。∵b⊂α

∴b⊥p,即p·b=0

∵a∥b,由共线向量基本定理可知存在一实数k使得a=kb

那么p·a=p·kb=kp·b=0

即a⊥p

∴a∥α

以上内容参考:百度百科——线面平行



推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式