高等数学,求定积分,最好有解答过程!谢谢!
令√x=t,则x=t²
x:0→4,t:0→2
∫[0:4][1/(1+√x)]dx
=∫[0:2][1/(1+t)]d(t²)
=∫[0:2][2t/(1+t)]dt
=∫[0:2][(2t+2-2)/(1+t)]dt
=2∫[0:2]dt -2∫[0:2][1/(1+t)]d(1+t)
=2t|[0:2]-2ln|1+t||[0:2]
=2·(2-0)-2(ln3-ln1)
=4-2ln3
(2)
令√(u-1)=t,则u=t²+1
u:1→5,t:0→2
∫[1:5][√(u-1)/u]du
=∫[0:2][t/(1+t²)d(1+t²)
=∫[0:2][2t²/(1+t²)dt
=∫[0:2][(2t²+2-2)/(1+t²)dt
=∫[0:2]2dt -2∫[0:2][1/(1+t²)]dt
=2t|[0:2]-2arctant|[0:2]
=2·(2-0)-2(arctan2-arctan0)
=4-2arctan2
(3)
∫[0:π]x²cos(2x)dx
=½∫[0:π]x²d[sin(2x)]
=½x²·sin(2x)|[0:π]-½∫[0:π]sin(2x)d(x²)
=½·[π²·sin(2π)-0²·sin0]-½∫[0:π]2xsin(2x)dx
=½∫[0:π]xd[cos(2x)]
=½x·cos(2x)|[0:π] -½∫[0:π]cos(2x)dx
=½·[π·cos(2π)-0·cos0]-¼sin(2x)|[0:π]
=½π-¼[sin(2π)-sin0]
=½π
设 x = t²。则 dx =2t*dt,t 的积分范围变换为:[0, 2]
那么,上式积分变换为:
=∫2t*dt/(1+t)
=2∫[1-1/(1+t)]*dt
=2[∫dt - ∫dt/(1+t)]
=2[t - ln(1+t)]|t=0→2
=2[(2-0) - (ln3-ln1)]
=2(2-ln3)
=4-2ln3
设 u - 1=t²。则 du = 2t*dt,t 的积分范围变换为:[0,2]
那么,上式积分变换为:
=∫t/(1+t²)*2t*dt
=2∫t²*dt/(1+t²)
=2∫[1-dt/(1+t²)]
=2[∫dt - ∫dt/(1+t²)]
=2[t - arctan(t)]|t=0→2
=2[(2-0) - (arctan2 - arctan0)]
=4 - 2arctan2
∫x²cos2x*dx
=1/2*x²*sin2x - 1/2*∫sin2x * 2x*dx
=1/2*x²*sin2x - ∫x*sin2x*dx
=1/2*x²*sin2x - 1/2*x*sin2x + 1/2*∫sin2x*dx
=[1/2*x²*sin2x - 1/2*x*sin2x -1/4*cos2x]|x=0→π
=1/2*[π²*sin(2π)-0²*sin0] - 1/2*[π*sin(2π) - 0*sin0] -1/4*[cos2π - cos0]
=0