在三角形ABC中,D.E分别是AB.AC边上的点,且BD=CE.M.N分别是BE.CD边上的中点,过
在三角形ABC中,D.E分别是AB.AC边上的点,且BD=CE.M.N分别是BE.CD边上的中点,过M.N的直线分别交AB.AC于点F.G.求证:AF=AG...
在三角形ABC中,D.E分别是AB.AC边上的点,且BD=CE.M.N分别是BE.CD边上的中点,过M.N的直线分别交AB.AC于点F.G.求证:AF=AG
展开
展开全部
证明:取BC的中点O,连接OM,ON.
∵OB=OC,MB=ME.
∴OM∥CE,得∠OMN=∠AGM;OM=CE/2.(三角形中位线的性质)
同理:ON∥BD,得∠ONM=∠AFN;ON=BD/2.
又CE=BD,则OM=ON,∠OMN=∠ONM.
∴∠AGM=∠AFN(等量代换).
所以,AF=AG.(等角对等边)
∵OB=OC,MB=ME.
∴OM∥CE,得∠OMN=∠AGM;OM=CE/2.(三角形中位线的性质)
同理:ON∥BD,得∠ONM=∠AFN;ON=BD/2.
又CE=BD,则OM=ON,∠OMN=∠ONM.
∴∠AGM=∠AFN(等量代换).
所以,AF=AG.(等角对等边)
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:在BC取一点P,使PB=PC,连接PM,PN
∵PB=PC,BM=ME
∴PM∥EC,PM=1/2EC
∵PB=PC,CN=DN
∴PN∥BD,PN=1/2BD
∵BD=CE
∴PM=PN
∴∠PNM=∠PMN
∵PN∥BD
∴∠PNM=∠NFA
∵PM∥EC
∴∠PMN=∠NGA
∴∠NFA=∠NGA
∴AF=AG
希望满意采纳,祝学习进步。
∵PB=PC,BM=ME
∴PM∥EC,PM=1/2EC
∵PB=PC,CN=DN
∴PN∥BD,PN=1/2BD
∵BD=CE
∴PM=PN
∴∠PNM=∠PMN
∵PN∥BD
∴∠PNM=∠NFA
∵PM∥EC
∴∠PMN=∠NGA
∴∠NFA=∠NGA
∴AF=AG
希望满意采纳,祝学习进步。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询