空间向量平行公式?x y z三个轴的
空间向量平行公式即共线公式:两个空间向量a,b向量(b向量不等于0),a∥b的充要条件是存在唯一的实数λ,使a=λb
空间向量平行公式证明:
1.充分性:对于向量 a(a≠0)、b,如果有一个实数λ,使 b=λa,那么由实数与向量的积的定义 知,向量a与b共线。
2.必要性:已知向量a与b共线,a≠0,且向量b的长度是向量a的长度的m倍,即 ∣b∣=m∣a∣。那么当向量a与b同方向时,令 λ=m,有 b =λa,当向量a与b反方向时,令 λ=-m,有 b=λa。如果b=0,那么λ=0。
扩展资料:
共线公式的推论:
1.两个向量a、b共线的充要条件是:存在不全为零的实数λ、μ,使得 λa+μb=0。
2.两个非零向量a、b共线的充要条件是:存在全不为零的实数λ、μ,使得 λa+μb=0。
3.如果a、b是两个不共线的向量,且存在一对实数λ、μ,使得 λa+μb=0,那么λ=μ=0。
4.如果三点P、A、B不共线,那么点C在直线AB上的充要条件是:存在唯一实数λ,使得向量PC=(1-λ)向量PA+λ向量PB。(其中,向量AC=λ向量AB)。
5.如果三点P、A、B不共线,那么点C在直线AB上的充要条件是:存在不全为零的实数λ、μ、ν,使得λ向量PA+μ向量PB+ν向量PC=0,λ+μ+ν=0。
参考资料来源:百度百科——共线向量基本定理
空间向量平行公式即共线公式:两个空间向量a,b向量(b向量不等于0),a∥b的充要条件是存在唯一的实数λ,使a=λb
共线向量定理
定理1
⊿ABC中,点D在直线BC上的充要条件是
其中
都是其对应向量的数量。
证明:有推论5 即可证得。
定理2
⊿ABC中,点D在直线BC上的充要条件是
其中
都是有向面积。通常约定,顶点按逆时针方向排列的三角形面积为正,顶点按顺时针方向排列的三角形面积为负。
证明:由定理1 即可得证。
扩展资料:
共线向量基本定理
如果a≠0,那么向量b与a共线的重要条件是:存在唯一实数λ,使得b=λa。
证明:
1)充分性:对于向量 a(a≠0)、b,如果有一个实数λ,使 b=λa,那么由实数与向量的积的定义知,向量a与b共线。
2)必要性:已知向量a与b共线,a≠0,且向量b的长度是向量a的长度的m倍,即 ∣b∣=m∣a∣。那么当向量a与b同方向时,令 λ=m,有 b=λa,当向量a与b反方向时,令 λ=-m,有 b=λa。如果b=0,那么λ=0。
3)唯一性:如果 b=λa=μa,那么 (λ-μ)a=0。但因a≠0,所以 λ=μ。
证毕。
比如说xyz=123的时候
与xyz=246就是平行的
推荐于2017-10-29
↔存在实数λ,μ(λ²+μ²≠0),使λ(a,b,c)+μ(d,e,f)=0
广告 您可能关注的内容 |