设f(x)在[0,1]上具有二阶导数,且f(1)=f(0)=f'(1)=f'(0)=0,证明:存在ξ∈(0,1)使得f''(ξ )=f(ξ ) 5

宛丘山人
2012-11-18 · 长期从事大学高等数学和计算机数据结构教学
宛丘山人
采纳数:6405 获赞数:24678

向TA提问 私信TA
展开全部
∵f(x)在[0,1]上具有二阶导数
∴f'(x)-∫[0,x]f(x)dx在[0,1]上连续,f'(x)-∫[0,x]f(x)dx在(0,1)内可导
f'(0)-∫[0,0]f(x)dx=f'(1)-∫[0,1]f(x)dx
∴根据拉格朗日中值定理,至少存在一点ξ∈(0,1)使得
f''(ξ )-f(ξ )=0 即f''(ξ )=f(ξ )
百度网友a91b3b2
2012-12-15 · TA获得超过190个赞
知道答主
回答量:108
采纳率:0%
帮助的人:84.9万
展开全部
楼上的,第三条不对呀!没说∫0到1fxdx为0啊?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式