设a>b>c,请证明以下不等式:bc²+ca²+ab²<b²c+c²a+a²b

feidao2010
2012-11-18 · TA获得超过13.7万个赞
知道顶级答主
回答量:2.5万
采纳率:92%
帮助的人:1.6亿
展开全部
证明:利用作差比较法
右-左
=(b²c+c²a+a²b)-(bc²+ca²+ab²)
=bc(b-c)+ca(c-a)+ab(a-b)
=bc(b-c)+ca(c-b)+ca(b-a)+ab(a-b)
=(bc-ac)(b-c)+(ca-ab)(b-a)
=c(b-a)(b-c)+a(c-b)(b-a)
=(b-a)(b-c)(c-a)
=(a-b)(b-c)(a-c)
∵ a>b>c
∴ (a-b)(b-c)(a-c)>0
∴ 原不等式成立
龙行四驱cu34e
2012-11-27 · TA获得超过110个赞
知道答主
回答量:121
采纳率:0%
帮助的人:24.8万
展开全部
右边—左边整理得
a²(b-c)+b² (c-a)+c² (a-b)>0
因为a>b>c,所以b-c>0,a-b>0 , c-a<0
a>b>c>1,
a²(b-c)+b² (c-a)+c² (a-b)>c²(a-b+b-c)+b² (c-a)=c²-b² <0
-1>a>b>c,
a²(b-c)+b² (c-a)+c² (a-b)>c²(a-b+b-c)+b² (c-a)=a²-b² <0
-1>a>b>c>0,
用同上的方法判断
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
杨泽瑞123
2013-10-09
知道答主
回答量:9
采纳率:0%
帮助的人:2.7万
展开全部
=(b²c+c²a+a²b)-(bc²+ca²+ab²)
=bc(b-c)+ca(c-a)+ab(a-b)
=bc(b-c)+ca(c-b)+ca(b-a)+ab(a-b)
=(bc-ac)(b-c)+(ca-ab)(b-a)
=c(b-a)(b-c)+a(c-b)(b-a)
=(b-a)(b-c)(c-a)
=(a-b)(b-c)(a-c)
∵ a>b>c
∴ (a-b)(b-c)(a-c)>0
-1>a>b>c>0,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
1227218572
2012-11-18
知道答主
回答量:29
采纳率:0%
帮助的人:11.8万
展开全部
还没学到
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式