已知函数f(x)=ax²+bx+1〔a.b为实数〕,x属于R

(1)若f(-1)=0,且函数f(x)的值域为[0,+∞),求f(x)的表达式(2)在(1)的条件下,若g(x)=f(x)-kx在x∈[-2,2]上是单调函数,求实数k的... (1)若f(-1)=0,且函数f(x)的值域为[0,+∞),求f(x)的表达式
(2)在(1)的条件下,若g(x)=f(x)-kx在x∈[-2,2]上是单调函数,求实数k的取值范围
展开
海皇苏摩Oo
2012-11-18 · TA获得超过189个赞
知道答主
回答量:65
采纳率:0%
帮助的人:51.5万
展开全部
﹙1﹚ f ﹙﹣1﹚=a-b+1=0…………①
又 函数f(x)的值域为[0,+∞),则f﹙x﹚对称轴为x=﹣b/2a=﹣1…………②
由①②解得a=1,b=2
即f﹙x﹚=x²+2x+1

﹙2﹚g﹙x﹚=f﹙x﹚-kx=x²+﹙2-k﹚x+1
∵g﹙x﹚在[﹣2,2]单调∴﹣﹙2-k﹚/2≤﹣2或﹣﹙2-k﹚/2≥2
∴k≤﹣2或k≥6
Sievers分析仪
2025-01-06 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
zhaohongwei47
2012-11-25 · TA获得超过623个赞
知道小有建树答主
回答量:148
采纳率:0%
帮助的人:162万
展开全部
(1)函数f(x)的值域为[0,+∞),则a>0
f(-1)=0即-b/2a=-1 且a-b+1=0所以f(x)=x²+2x+1
(2)在(1)的条件下,若g(x)=f(x)-kx在x∈[-2,2]上是单调函数,求实数k的取值范围
g(x)=f(x)-kx=x²+2x+1-Kx对称轴 -(2-K)/2>=2或者《=-2
所以K>=6或K=<-2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友cddd414
2012-11-18 · 超过23用户采纳过TA的回答
知道答主
回答量:115
采纳率:0%
帮助的人:56.8万
展开全部
f(-1)=0 a-b+1=0
f(x) x属于R 值域为[0,+∞)
则b的平方=4a 且a>0
b=2 a=1
f=x²+2x+1
(2)
g=x²+2x+1-kx
g的导数2x+2-k 在[-2,2]不等于0 g的导数单调增长
则g(-2)>0 k<-2
或G(2)<0 k>6
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式