已知椭圆2x^2+3y^2=6,求x^2+y^2+2x的最值

辵大曰文
2012-11-19 · TA获得超过1.1万个赞
知道大有可为答主
回答量:5215
采纳率:80%
帮助的人:1477万
展开全部
椭圆方程为2x²+3y²=6

故y²=2-(2/3)x²

于是x²+y²+2x
=x²+2-(2/3)x²+2x
=(1/3)x²+2x+2
=(1/3)(x+3)²-1

根据椭圆的方程,x的取值范围为-√3≤x≤√3
x²+y²+2x=(1/3)(x+3)²-1的最大值在x=√3时取得,为3+2√3
最小值在x=-√3时取得,为3-2√3

PS:也可以用图形法、参数方程法来解,在此不一一列举
愿为学子效劳
2012-11-20 · TA获得超过9841个赞
知道大有可为答主
回答量:1688
采纳率:100%
帮助的人:738万
展开全部
易知椭圆标准方程来x^2/3+y^2/2=1
即焦点在x轴,a=√3,b=√2,c=1
令x^2+y^2+2x=m
即(x+1)^2+y^2=m+1(注意到m+1>0)
上式表示圆心为(-1,0)、半径为√(m+1)的同心圆系
根据对称性易知
此圆系中与椭圆内切的圆的半径为最小
此圆系中与椭圆内切的圆的半径为最大

注意到此圆系的圆心正好在椭圆的左焦点上
而左焦点到椭圆左顶点的距离为最短
所以与椭圆内切的圆的半径为a-c=√3-1
即√(m+1)=√3-1
解得m=3-2√3
此时(x^2+y^2+2x)min=3-2√3

因左焦点到椭圆右顶点的距离为最短
所以与椭圆外切的圆的半径为a+c=√3+1
即√(m+1)=√3+1
解得m=3+2√3
此时(x^2+y^2+2x)mmax=3+2√3
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
artintin
2012-11-19 · TA获得超过1.2万个赞
知道大有可为答主
回答量:7508
采纳率:80%
帮助的人:2872万
展开全部
可取椭圆的参数方程 x=(√3)cost y=(√2)sint
x^2+y^2+2x=3cos²t+2sin²t+2√3cost

=cos²t+2√3cost+2
=(cost+√3)²-1
可知其最大值为 (1+√3)²-1=3+2√3 对应cost=1 x=√3 y=0
可知其最大值为 (-1+√3)²-1=3-2√3 对应cost=-1 x=-√3 y=0
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式