一个高数的问题

考虑这么一个函数:F(x)=exp(-(k1/x+x)^2/2),x>0,这个函数的形状大概是一个波浪,F(0)=F(inf)=0,F'(0)=F'(inf)=0,中间有... 考虑这么一个函数:F(x) = exp( - ( k1 / x + x ) ^ 2 / 2 ),x>0,这个函数的形状大概是一个波浪,F(0) = F(inf) = 0,F'(0) = F'(inf) = 0,中间有一个峰值。
但是如果把许多个不同参数的F(x)加权在一起:
G(x) = w1 * exp( - ( k1 / x + x ) ^ 2 / 2 ) + w2 * exp( - ( k2 / x + x ) ^ 2 / 2 ) 。那么这个函数是什么形状呢?
现在可以肯定的是,在w1 w2异号、k1 k2至少一个是负数的情况下,(0, inf)之间可以有两个位置使得G'(x) = 0,其中一个在x轴上方一个在x轴下方。

以下是我的推断,需要你帮我证明,或者帮我推翻:
如果w1和w2都是正数,则必有G(x)>0,此时(0, inf)之间应该不可能有两个G'(x) = 0,只能是1个或者3个(因为G(0) = G(inf) = 0和G'(0) = G'(inf) = 0,两个怎么画都画不出来),我倾向于猜测是1个。而如果1个成立的话,那就意味着,G(x)这个函数再扩展下去,无论多少个F(x)的形式加在一起,都至多有两个G'(x) = 0(考虑把所有的wi > 0项整合在一起得到一个峰,所有wi < 0项整合在一起得到一个谷)。这个结果看起来又有点不像。
展开
路if
2008-04-03 · TA获得超过390个赞
知道小有建树答主
回答量:123
采纳率:66%
帮助的人:65.4万
展开全部
还是有两个
G'(0) = G'(inf) = 0我用MATLAB画了
y=0.3*exp(-((x+1/x)^2)/2)+0.7*exp(-((x-2/x)^2)/2)+0.1*exp(-((x+5/x)^2)/2)的图形看过
CD的三色堇
2008-04-01 · 超过18用户采纳过TA的回答
知道答主
回答量:92
采纳率:0%
帮助的人:59.4万
展开全部
对不起看见你给的分很高我就进来了,可是我不会,呜呜呜
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
数学一专家
2008-04-01 · TA获得超过1027个赞
知道小有建树答主
回答量:310
采纳率:0%
帮助的人:0
展开全部
你要是明明白白的用我能看懂的公式表示,这题是不难的。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式