弦切角定理是什么?
1个回答
展开全部
弦切角定理:弦切角的度数等于它所夹的弧的圆心角度数的一半。
等于它所夹的弧的圆周角度数。
如图2,已知:直线PT切圆O于点C,BC、AC为圆O的弦。
求证:∠TCB=1/2∠BOC=∠BAC
证明:设圆心为O,连接OC,OB
∵∠OCB=∠OBC
∴∠OCB=1/2*(180°-∠BOC)
又∵∠BOC=2∠BAC
∴∠OCB=90°-∠BAC
∴∠BAC=90°-∠OCB
又∵∠TCB=90°-∠OCB
∴∠TCB=1/2∠BOC=∠BAC
综上所述:∠TCB=1/2∠BOC=∠BAC
简介。
弦切角定理:弦切角的度数等于它所夹的弧所对的圆心角度数的一半,等于它所夹的弧所对的圆周角度数。
与圆相切的直线,同圆内与圆相交的弦相交所形成的夹角叫做弦切角。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询