电场力做功和电势能.电势和电势差_电势差与电场力做功
展开全部
电场力做功和电势能、电势和电势差 目标认知
学习目标
1.类比重力场理解电场力的功、电势能的变化、电势能的确定方法、电势的定义以及电势差的意义;理解电势对静电场能的性质的描写和电势的叠加原理。
2.明确场强和电势的区别与联系以及对应的电场线和等势面之间的区别和联系。 学习重点
1.用电势及等势面描写认识静电场分布。
2.熟练地进行电场力、电场力功的计算。
学习难点
电势这一概念建立过程的逻辑关系以及正、负两种电荷所导致的具体问题的复杂性。
知识要点梳理
要点诠释: 知识点一:电势与等势面
1.电场力的功与电势能
(1)电场力做功的特点
在电场中将电荷q从A点移动到B点,电场力做功与路径无关,只与A、B两点的位置有关。
(2)静电场中的功能关系
静电力对电荷做了功,电势能就发生变化,静电力对电荷做了多少功,就有多少电势能转化为其他形式的能,电荷克服静电力做了多少功,就有多少其他形式的能转化为电势能,也就是说,静电力做的功是电势能转化为其他形式的能的量度,静电力做的功等于电势能的减少量,即WAB=EpA-EpB。
即静电力做正功,电荷电势能一定减少,静电力做负功,电荷电势能一定增加。
(3)电势能的特点和大小的确定
①零势点及选取
和计算重力势能一样,电势能的计算必须取参考点,也就是说,电势能的数值是相对于参考位置来说的。所谓参考位置,就是电势能为零的位置,参考位置的选取是人为的,通常取无限远处或大地为参考点。
②电势能的计算
设电荷的电场中某点A的电势能为EpA,移到参考点O电场力做功为WAO,即WAO=EpA-EpO,规定O为参考点时,就有WAO=EpA,也就是说电荷在电场中某点的电势能等于将这个电荷从电
场中的该点移到0势点的过程电场力所做的功。
③电势能的特点
相对性:电荷在电场中的电势能是相对于零电势能点而言,没有规定零势能点时,电荷在该点的电势能没有确定的值。电势能高于零势能时为正值,低于零势能时为负值。 系统性:电势能是电荷和电场这一相互作用系统所共有,并非电荷所独有!
状态量:只要电荷在电场中有一个位置,它就对应一个电势能。
电势能是标量:有正、负号没有方向。
④电势能与重力势能的类比
2.电势与电势差
(1)电势的意义及定义
电势是表征电场中某点能的性质的物理量,仅与电场中某点性质有关,与电场力做功的值及试探电荷的电荷量、电性无关,定义式,类似于场强定义式,也是比值定义式。
(2)电势的特性
①电势的具体值只有在选定了零电势点后才能确定,故电势是相对的,电势零点的选取是任意的,但以方便为原则。如果没有特别规定,一般选无穷远或大地的电势为零。
②电势是标量,只有大小,没有方向,在规定了零电势后,电场中各点的电势可以是正值,也可以是负值,正值表示该点电势比零电势点电势高,负值表示该点电势比零电势点电势低,所以,同一电场中,正电势一定高于负电势。
③若以无穷远处电势为零,则正点电荷周围各点电势为正,负点电荷周围各点电势为负,越靠近正电荷电势越高,越远离负电荷电势越高。
(3)电势差
①电势差的定义:
电场中确定的两点,电势是相对的,但电势差是绝对的,是描写场的性质的物理量。
②电势差的计算、用电势差表达电场力的功。
电势差和静电力做功密切相关,由公式看出,电势差在数值上等于移动单位正电荷时静电力所做的功。由公式WAB=qUAB看出,知道了电场中两点的电势差,可以方便地计算静电力做的功。
在计算电场力的功时利用WAB=qUAB比W=F·d更具优越性,因为WAB=qUAB,既可以是匀强电场也可以是非匀强电场,只要知道A、B两点间的电势差就可以计算在A、B两点间移动电荷q所做的功。
3.等势面
(1)等势面的画法和意义
在电场中电势相等的点所构成的面叫等势面,随意找几个点,都能画出它们的等势面,这样的几个等势面不能完整地描述电场。如果我们每隔相等的电势画等势画,也就是我们通常所说的等差等势面,就可以比较形象、完整地描述电场了。
(2)等势面的性质:
①在同一等势面上各点电势相等,所以在同一等势面上移动电荷,电场力不做功 ②电场线跟等势面一定垂直,并且由电势高的等势面指向电势低的等势面
③等势面越密,电场强度越大
④等势面不相交,不相切
(3)几种电场的电场线及等势面
孤立正点电荷:以点电荷为球心的一族球面
等量异种电荷
等量同种正点电荷
匀强电场
注意:
①等量同种正点电荷连线和中线上
连线上:中点电势最小
中线上:由中点到无穷远电势逐渐减小,无穷远电势为零。
②等量异种电荷连线上和中线上
连线上:由正电荷到负电荷电势逐渐减小。
中线上:各点电势相等且都等于零。
(4)等势面的应用
ⅰ.由等势面可以判断电场中各点电势的高低及差别。
ⅱ.由等势面可以判断电荷在电场中移动时静电力做功的情况。
ⅲ.由等势面和电场线垂直,可知等势面的形状分布,可以绘制电场线,从而确定电场的大体分布。
知识点二:电场强度与电势的关系
≠0。 要点诠释: 1.场强E与电势φ在数值上没有必然的联系 (1)场强为零的地方电势不一定不为零:如等量同种电荷的连续中点处E=0,
(2)电势为零处,场强不一定不为零:如等量异种电荷的连线中点处=0,E≠0。
(3)场强增大电势可以降低:如沿着负的点电荷的电场线方向,场强增大而电势反而降低;沿着正点电荷的电场线方向,电势降低场强减小。
(4)场强是一个绝对量,电势是一个相对量。
2.场强E与电势差的关系
(1)在匀强电场中 d是两等势面之间的距离,E的单位也可以是V / m。
。电势差U的大 若匀强电场中的两点间距为,连线与电场线成角,则
小与两点间距离成正比。
(2
)在非匀强电场中,某点处的场强,其意义为:电场中某点的场强等于该点附近电势随距离变化率的最大值;场强的方向就是电势降低最快的方向。
规律方法指导
1.认识问题或事物的科学方法
(1)类比法:将库仑力与万有引力类比,将电场力的功及电势能与重力的功、重力势能相类比,等等。
(2)形象描写法:引入电场线和等势面直观地描写了电场的分布,对分析解决问题提供了很大方便。
(3)比值定义法:如
,
。 2.电场力功的计算方法
(1)利用公式和WAB=qUAB时,各量的正、负号有两种处理办法: ①带正、负号进行运算,根据计算结果的正负判断电势高低或功的正、负。 ②只将绝对值代入公式运算,例如计算WAB,无论q、UAB正负,只将它们的绝对值代入公式。若要知道WAB的正负,可根据静电力方向和位移方向的夹角判定。
(2)利用电势能的变化计算 WAB=EpA-EpB
(3)在匀强电场中也可用
计算
3.电场中两点电势高低的比较
(1)根据电场力做功判断
①在两点间移动正电荷,如果电场力做正功,则电势是降低的,如果电场力做负功,则电势升高。
②在两点间移动负电荷,如果电场力做正功,则电势升高,如果电场力做负功,则电势降低。
(2)根据电场线确定
电场线的方向就是电势降低最快的方向。
(3)根据电荷电势能的变化
①如果在两点间移动正电荷时:电势能增加,则电势升高;电势能减少,则电势降低。 ②如果在两点间移动负电荷时:电势能增加,则电势降低;电势能减少,则电势升高。 4.计算场强的三个公式
(1)定义式
N / C(适用任何电场)
(2)决定式
(适用于真空中点电荷)
(3)关系式
V / m(通常用于匀强电场)
5
.电势差的计算公式
(1)
(2)
6
.理清几个关系
(1)电场强度和电势是电场本身的性质,与试探电荷无关。电势能既与电荷有关,又与所在处的电势有关。
(2)场强和电势无必然联系,场强为零的地方电势不一定为零,场强大处电势不一定大,反之亦然。
(3)电势和电势能的大小都是相对的,与零势面的选取有关。通常选无穷远处或大地的电势为零。
(4)电势能变化是通过电场力做功进行的,电势能变化由电场力做功唯一决定。
(5)用公式
对正电荷,电势来判断电势能随电势变化情况时,要区分正负电荷,分别研究。越高,电势能Ep越大。
典型例题透析
类型一:电势、电势能与电场力的功
-
1. 如果把q=1.0×108C的电荷从无穷远移到电场中的A点,需要克服电场力做
―功W=1.2×104 J,那么
(1)q在A点的电势能和A点的电势各是多少?
(2)q移入电场前A点的电势是多少?
解析:
(1)电场力做负功,电势能增加,无穷远处的电势为零,电荷在无穷远处的电势能也为零,电势能的变化量等于电场力做的功,W=EpA―Ep∞
所以EpA=W=1.2×104 J,-。
(2)A点的电势是由电场本身决定的,跟A点是否有电荷存在无关,所以q移入电场前,A点的电势仍为1.2×104 V。
答案:(1)EpA=1.2×104 J,-
A=1.2×104 V (2)1.2×104 V
总结升华:
①电势和电势能与零势面的选择有关。
②由求电势时可将“+”“-”直接代入计算。
③涉及功能关系时注意能够根据运动情况明确受力。
举一反三
【变式】在场强大小为E的匀强电场中,一质量为m、带电荷量为+q的物体以某一初速度沿电场反方向做匀减速直线运动,其加速度大小为0.8 qE / m,物体运动s距离时速度变为零,则( )
A.物体克服电场力做功qEs B.物体的电势能减少了0.8 qEs
C.物体的电势能增加了qEs D.物体的动能减少了0.8 qEs
解析:
由加速度大小可知,带电体除受电场力作用外,还受其他力作用,
电由功能关系可知,克服电场力做功W
合·s=mas=0.8 qEs。
答案:ACD
=ΔE电=qE·s。由功能关系,动能的减少|ΔEk|=F
类型二:静电场中的能量守恒
2. 图中虚线所示为静电场中的等势面1、2、3、4,相邻的等势面之间的电势差相等,其中等势面3的电势为0。一带正电的点电荷在静电力的作用下运动,经过a、b点时的动能分别为26 eV和5 eV。当这一点电荷运动到某一位置,其电势能变为-8 eV,它的动能应为( )
A.8 eV B.13 eV
C.20 eV D.34 eV
解析:等势面3的电势为零,则电势能也为零。由于两相邻等势面的电势差相等,又知Eka>Ekb,则a点的电势能可表示为-2qU(U为相邻两等势面的电势差),b点的电势能可表示为qU。
由于总的能量守恒,则有:Eka+(-2qU)=Ekb+qU
即26-2qU=5+qU,解得qU=7 eV
则总能量为7 eV+5 eV=12 eV
当电势能为―8 eV时,动能Ek=12eV-(-8eV) =20 eV。
答案:C
总结升华:解决此类问题时明确零势面,求出电荷在电场中的总能量是解题的关键环节。 举一反三
【变式】带电粒子M只在电场力作用下由P点运动到Q点,在此过程中克服电场力做
-了2.6×108 J的功。那么( )
A.M在P点的电势能一定小于它在Q点的电势能
B.P点的场强一定小于Q点的场强
C.P点的电势一定高于Q点的电势
D.M在P点的动能一定大于它在Q点的动能
解析:粒子从P点到Q点克服电场力做功,即WPQ=UPQ·q
<0,根据电场力做功与电势能变化之间关系;ΔE=―W可知EQ―EP=―WPQ
>0,所以EP<EQ,故A对。
根据能量守恒EP+EkP=EQ+EkQ,而EP<EQ,所以EkP>EkQ。故D正确。
由于条件不足,不能比较电场强度、电势的大小,故BC错。
答案:AD
类型三:电场线与等势面的关系
3. 如图所示,实线为电场线,虚线为等势面,且AB=BC,电场中的A、B、C三
、、,AB、BC间的电势差分别为UAB、点的场强分别为EA、EB、EC,电势分别为UBC,则下列关系中正确的有
A.
B.EC>EB>EA
C.UAB<UBC
D.UAB=UBC
解析:沿着电场线的方向电势降低,所以,选项A正确;电场线密的地
,方电场强度大,所以EC>EB>EA,选项B正确;沿着电场线的方向电势降低
在相同(AB=BC)的情况下,场强大的区间电势差也大,所以UAB<UBC,选项C正确。 答案:ABC
类型四:电场强度与电势的关系
4. 如图,P、Q是等量的正点电荷,O是它们连线的中点,A、B是中垂线上的两
、分别表示A、B两点的电场强度和电势,则( )
点,OA<OB,用EA、EB和 A.EA一定大于EB, B.EA不一定大于EB, C.EA一定大于EB, D.EA不一定大于EB,一定大于一定大于不一定大于不一定大于
解析:P、Q所在空间中各点的电场强度和电势由这两个点电荷共同决定,电场强度是矢量,P、Q两点电荷在O点的合场强为零,在无限远处的合场强也为零,从O点沿PQ垂直平分线向远处移动,场强先增大,后减小,所以EA不一定大于EB。电势是标量,由等量同号电荷的电场线分布图可知,从O点向远处,电势是一直降低的,故所以只有B对。
一定大于,
电荷
所以
地方电势不一定等于零。
答案:B 总结升华:电场强度与电势的大小没有直接的关系,它们是从两个不同的角度描述场性质的物理量。在电场中某点受力大,该点场强大,电势不一定高,电场强度大的地方电势不一定高。电场强度等于零的
类型五:电场强度与电势差的关系
5. 如图所示,A、B、C是匀强电场中的等腰直角三角形的三个顶点,已知A、B、
=15 V、=3 V、=-3 V,试确定场强的方向。 C三点的电势分别为
解析:根据A、B、C三点电势的特点,在AC连线上取M、N两点,使AM=MN=NC,如图,尽管AC不一定是场强方向,但可以肯定AM、MN、NC在场强方向上的投影长度相等,由U=Ed可知,
由此可知,。 ,B、N两点等势,B、N的连线即为一条等势线,那么场强的方向与BN垂直斜向下,如图所示:
总结升华:确定场强方向通常的方法是:依匀强电场的性质找等势点,连等势线,画电场线。注意到场强方向垂直于等势面指向电势降低的方向。 举一反三
【变式一】匀强电场中有A、B、C三点构成三角形,边长均为4 cm。将一带电荷量q=1.0×10-10 C的正电荷(不计重力),从A点移到C点,电场力做功为,若把同一电荷从A点移到B点,电场力做功为,那么该电场的场强是多大?
解析:由题意,把正电荷从电场中的A点分别移到C点或B点,电场力做的功相同,根据W=qU可知,B、C两点电势相同,在同一等势面上。由于电场中的等势面与电场线垂直,可见A点与BC等势面在场强方向的距
离
A、B两点的电势差
该电场的电场强度
。
答案:5×102 V / m
【变式二】(2011山东卷)如图所示,在两等量异种点电荷的电场中,MN为两电荷连线的中垂线,a、b、c三点所在直线平行于两电荷的连线,,且a与c关于MN对称,b点位于MN上,d点位于两电荷的连线上。以下判断正确的是
A.b点场强大于d点场强
B.B点场强小于d点场强
C.a、b两点的电势差等于b、c两点间的电势差
D.试探电荷+q在a点的电势能小于在c点的电势能
解析:根据等量异种点电荷的电场的分布特点和叠加原理可知A错误,B正确;因为a、 b、c三点所在直线平行于两电荷的连线,且a与c关于MN对称,a、b两点的电势差等于b、c两点间的电势差,C正确;根据等量异种点电荷的电场的分布特点,a点的电势高于c点的电势,所以试探电荷+q在a点的电势能大于在c点的电势能,D错误。
答案:BC
学习目标
1.类比重力场理解电场力的功、电势能的变化、电势能的确定方法、电势的定义以及电势差的意义;理解电势对静电场能的性质的描写和电势的叠加原理。
2.明确场强和电势的区别与联系以及对应的电场线和等势面之间的区别和联系。 学习重点
1.用电势及等势面描写认识静电场分布。
2.熟练地进行电场力、电场力功的计算。
学习难点
电势这一概念建立过程的逻辑关系以及正、负两种电荷所导致的具体问题的复杂性。
知识要点梳理
要点诠释: 知识点一:电势与等势面
1.电场力的功与电势能
(1)电场力做功的特点
在电场中将电荷q从A点移动到B点,电场力做功与路径无关,只与A、B两点的位置有关。
(2)静电场中的功能关系
静电力对电荷做了功,电势能就发生变化,静电力对电荷做了多少功,就有多少电势能转化为其他形式的能,电荷克服静电力做了多少功,就有多少其他形式的能转化为电势能,也就是说,静电力做的功是电势能转化为其他形式的能的量度,静电力做的功等于电势能的减少量,即WAB=EpA-EpB。
即静电力做正功,电荷电势能一定减少,静电力做负功,电荷电势能一定增加。
(3)电势能的特点和大小的确定
①零势点及选取
和计算重力势能一样,电势能的计算必须取参考点,也就是说,电势能的数值是相对于参考位置来说的。所谓参考位置,就是电势能为零的位置,参考位置的选取是人为的,通常取无限远处或大地为参考点。
②电势能的计算
设电荷的电场中某点A的电势能为EpA,移到参考点O电场力做功为WAO,即WAO=EpA-EpO,规定O为参考点时,就有WAO=EpA,也就是说电荷在电场中某点的电势能等于将这个电荷从电
场中的该点移到0势点的过程电场力所做的功。
③电势能的特点
相对性:电荷在电场中的电势能是相对于零电势能点而言,没有规定零势能点时,电荷在该点的电势能没有确定的值。电势能高于零势能时为正值,低于零势能时为负值。 系统性:电势能是电荷和电场这一相互作用系统所共有,并非电荷所独有!
状态量:只要电荷在电场中有一个位置,它就对应一个电势能。
电势能是标量:有正、负号没有方向。
④电势能与重力势能的类比
2.电势与电势差
(1)电势的意义及定义
电势是表征电场中某点能的性质的物理量,仅与电场中某点性质有关,与电场力做功的值及试探电荷的电荷量、电性无关,定义式,类似于场强定义式,也是比值定义式。
(2)电势的特性
①电势的具体值只有在选定了零电势点后才能确定,故电势是相对的,电势零点的选取是任意的,但以方便为原则。如果没有特别规定,一般选无穷远或大地的电势为零。
②电势是标量,只有大小,没有方向,在规定了零电势后,电场中各点的电势可以是正值,也可以是负值,正值表示该点电势比零电势点电势高,负值表示该点电势比零电势点电势低,所以,同一电场中,正电势一定高于负电势。
③若以无穷远处电势为零,则正点电荷周围各点电势为正,负点电荷周围各点电势为负,越靠近正电荷电势越高,越远离负电荷电势越高。
(3)电势差
①电势差的定义:
电场中确定的两点,电势是相对的,但电势差是绝对的,是描写场的性质的物理量。
②电势差的计算、用电势差表达电场力的功。
电势差和静电力做功密切相关,由公式看出,电势差在数值上等于移动单位正电荷时静电力所做的功。由公式WAB=qUAB看出,知道了电场中两点的电势差,可以方便地计算静电力做的功。
在计算电场力的功时利用WAB=qUAB比W=F·d更具优越性,因为WAB=qUAB,既可以是匀强电场也可以是非匀强电场,只要知道A、B两点间的电势差就可以计算在A、B两点间移动电荷q所做的功。
3.等势面
(1)等势面的画法和意义
在电场中电势相等的点所构成的面叫等势面,随意找几个点,都能画出它们的等势面,这样的几个等势面不能完整地描述电场。如果我们每隔相等的电势画等势画,也就是我们通常所说的等差等势面,就可以比较形象、完整地描述电场了。
(2)等势面的性质:
①在同一等势面上各点电势相等,所以在同一等势面上移动电荷,电场力不做功 ②电场线跟等势面一定垂直,并且由电势高的等势面指向电势低的等势面
③等势面越密,电场强度越大
④等势面不相交,不相切
(3)几种电场的电场线及等势面
孤立正点电荷:以点电荷为球心的一族球面
等量异种电荷
等量同种正点电荷
匀强电场
注意:
①等量同种正点电荷连线和中线上
连线上:中点电势最小
中线上:由中点到无穷远电势逐渐减小,无穷远电势为零。
②等量异种电荷连线上和中线上
连线上:由正电荷到负电荷电势逐渐减小。
中线上:各点电势相等且都等于零。
(4)等势面的应用
ⅰ.由等势面可以判断电场中各点电势的高低及差别。
ⅱ.由等势面可以判断电荷在电场中移动时静电力做功的情况。
ⅲ.由等势面和电场线垂直,可知等势面的形状分布,可以绘制电场线,从而确定电场的大体分布。
知识点二:电场强度与电势的关系
≠0。 要点诠释: 1.场强E与电势φ在数值上没有必然的联系 (1)场强为零的地方电势不一定不为零:如等量同种电荷的连续中点处E=0,
(2)电势为零处,场强不一定不为零:如等量异种电荷的连线中点处=0,E≠0。
(3)场强增大电势可以降低:如沿着负的点电荷的电场线方向,场强增大而电势反而降低;沿着正点电荷的电场线方向,电势降低场强减小。
(4)场强是一个绝对量,电势是一个相对量。
2.场强E与电势差的关系
(1)在匀强电场中 d是两等势面之间的距离,E的单位也可以是V / m。
。电势差U的大 若匀强电场中的两点间距为,连线与电场线成角,则
小与两点间距离成正比。
(2
)在非匀强电场中,某点处的场强,其意义为:电场中某点的场强等于该点附近电势随距离变化率的最大值;场强的方向就是电势降低最快的方向。
规律方法指导
1.认识问题或事物的科学方法
(1)类比法:将库仑力与万有引力类比,将电场力的功及电势能与重力的功、重力势能相类比,等等。
(2)形象描写法:引入电场线和等势面直观地描写了电场的分布,对分析解决问题提供了很大方便。
(3)比值定义法:如
,
。 2.电场力功的计算方法
(1)利用公式和WAB=qUAB时,各量的正、负号有两种处理办法: ①带正、负号进行运算,根据计算结果的正负判断电势高低或功的正、负。 ②只将绝对值代入公式运算,例如计算WAB,无论q、UAB正负,只将它们的绝对值代入公式。若要知道WAB的正负,可根据静电力方向和位移方向的夹角判定。
(2)利用电势能的变化计算 WAB=EpA-EpB
(3)在匀强电场中也可用
计算
3.电场中两点电势高低的比较
(1)根据电场力做功判断
①在两点间移动正电荷,如果电场力做正功,则电势是降低的,如果电场力做负功,则电势升高。
②在两点间移动负电荷,如果电场力做正功,则电势升高,如果电场力做负功,则电势降低。
(2)根据电场线确定
电场线的方向就是电势降低最快的方向。
(3)根据电荷电势能的变化
①如果在两点间移动正电荷时:电势能增加,则电势升高;电势能减少,则电势降低。 ②如果在两点间移动负电荷时:电势能增加,则电势降低;电势能减少,则电势升高。 4.计算场强的三个公式
(1)定义式
N / C(适用任何电场)
(2)决定式
(适用于真空中点电荷)
(3)关系式
V / m(通常用于匀强电场)
5
.电势差的计算公式
(1)
(2)
6
.理清几个关系
(1)电场强度和电势是电场本身的性质,与试探电荷无关。电势能既与电荷有关,又与所在处的电势有关。
(2)场强和电势无必然联系,场强为零的地方电势不一定为零,场强大处电势不一定大,反之亦然。
(3)电势和电势能的大小都是相对的,与零势面的选取有关。通常选无穷远处或大地的电势为零。
(4)电势能变化是通过电场力做功进行的,电势能变化由电场力做功唯一决定。
(5)用公式
对正电荷,电势来判断电势能随电势变化情况时,要区分正负电荷,分别研究。越高,电势能Ep越大。
典型例题透析
类型一:电势、电势能与电场力的功
-
1. 如果把q=1.0×108C的电荷从无穷远移到电场中的A点,需要克服电场力做
―功W=1.2×104 J,那么
(1)q在A点的电势能和A点的电势各是多少?
(2)q移入电场前A点的电势是多少?
解析:
(1)电场力做负功,电势能增加,无穷远处的电势为零,电荷在无穷远处的电势能也为零,电势能的变化量等于电场力做的功,W=EpA―Ep∞
所以EpA=W=1.2×104 J,-。
(2)A点的电势是由电场本身决定的,跟A点是否有电荷存在无关,所以q移入电场前,A点的电势仍为1.2×104 V。
答案:(1)EpA=1.2×104 J,-
A=1.2×104 V (2)1.2×104 V
总结升华:
①电势和电势能与零势面的选择有关。
②由求电势时可将“+”“-”直接代入计算。
③涉及功能关系时注意能够根据运动情况明确受力。
举一反三
【变式】在场强大小为E的匀强电场中,一质量为m、带电荷量为+q的物体以某一初速度沿电场反方向做匀减速直线运动,其加速度大小为0.8 qE / m,物体运动s距离时速度变为零,则( )
A.物体克服电场力做功qEs B.物体的电势能减少了0.8 qEs
C.物体的电势能增加了qEs D.物体的动能减少了0.8 qEs
解析:
由加速度大小可知,带电体除受电场力作用外,还受其他力作用,
电由功能关系可知,克服电场力做功W
合·s=mas=0.8 qEs。
答案:ACD
=ΔE电=qE·s。由功能关系,动能的减少|ΔEk|=F
类型二:静电场中的能量守恒
2. 图中虚线所示为静电场中的等势面1、2、3、4,相邻的等势面之间的电势差相等,其中等势面3的电势为0。一带正电的点电荷在静电力的作用下运动,经过a、b点时的动能分别为26 eV和5 eV。当这一点电荷运动到某一位置,其电势能变为-8 eV,它的动能应为( )
A.8 eV B.13 eV
C.20 eV D.34 eV
解析:等势面3的电势为零,则电势能也为零。由于两相邻等势面的电势差相等,又知Eka>Ekb,则a点的电势能可表示为-2qU(U为相邻两等势面的电势差),b点的电势能可表示为qU。
由于总的能量守恒,则有:Eka+(-2qU)=Ekb+qU
即26-2qU=5+qU,解得qU=7 eV
则总能量为7 eV+5 eV=12 eV
当电势能为―8 eV时,动能Ek=12eV-(-8eV) =20 eV。
答案:C
总结升华:解决此类问题时明确零势面,求出电荷在电场中的总能量是解题的关键环节。 举一反三
【变式】带电粒子M只在电场力作用下由P点运动到Q点,在此过程中克服电场力做
-了2.6×108 J的功。那么( )
A.M在P点的电势能一定小于它在Q点的电势能
B.P点的场强一定小于Q点的场强
C.P点的电势一定高于Q点的电势
D.M在P点的动能一定大于它在Q点的动能
解析:粒子从P点到Q点克服电场力做功,即WPQ=UPQ·q
<0,根据电场力做功与电势能变化之间关系;ΔE=―W可知EQ―EP=―WPQ
>0,所以EP<EQ,故A对。
根据能量守恒EP+EkP=EQ+EkQ,而EP<EQ,所以EkP>EkQ。故D正确。
由于条件不足,不能比较电场强度、电势的大小,故BC错。
答案:AD
类型三:电场线与等势面的关系
3. 如图所示,实线为电场线,虚线为等势面,且AB=BC,电场中的A、B、C三
、、,AB、BC间的电势差分别为UAB、点的场强分别为EA、EB、EC,电势分别为UBC,则下列关系中正确的有
A.
B.EC>EB>EA
C.UAB<UBC
D.UAB=UBC
解析:沿着电场线的方向电势降低,所以,选项A正确;电场线密的地
,方电场强度大,所以EC>EB>EA,选项B正确;沿着电场线的方向电势降低
在相同(AB=BC)的情况下,场强大的区间电势差也大,所以UAB<UBC,选项C正确。 答案:ABC
类型四:电场强度与电势的关系
4. 如图,P、Q是等量的正点电荷,O是它们连线的中点,A、B是中垂线上的两
、分别表示A、B两点的电场强度和电势,则( )
点,OA<OB,用EA、EB和 A.EA一定大于EB, B.EA不一定大于EB, C.EA一定大于EB, D.EA不一定大于EB,一定大于一定大于不一定大于不一定大于
解析:P、Q所在空间中各点的电场强度和电势由这两个点电荷共同决定,电场强度是矢量,P、Q两点电荷在O点的合场强为零,在无限远处的合场强也为零,从O点沿PQ垂直平分线向远处移动,场强先增大,后减小,所以EA不一定大于EB。电势是标量,由等量同号电荷的电场线分布图可知,从O点向远处,电势是一直降低的,故所以只有B对。
一定大于,
电荷
所以
地方电势不一定等于零。
答案:B 总结升华:电场强度与电势的大小没有直接的关系,它们是从两个不同的角度描述场性质的物理量。在电场中某点受力大,该点场强大,电势不一定高,电场强度大的地方电势不一定高。电场强度等于零的
类型五:电场强度与电势差的关系
5. 如图所示,A、B、C是匀强电场中的等腰直角三角形的三个顶点,已知A、B、
=15 V、=3 V、=-3 V,试确定场强的方向。 C三点的电势分别为
解析:根据A、B、C三点电势的特点,在AC连线上取M、N两点,使AM=MN=NC,如图,尽管AC不一定是场强方向,但可以肯定AM、MN、NC在场强方向上的投影长度相等,由U=Ed可知,
由此可知,。 ,B、N两点等势,B、N的连线即为一条等势线,那么场强的方向与BN垂直斜向下,如图所示:
总结升华:确定场强方向通常的方法是:依匀强电场的性质找等势点,连等势线,画电场线。注意到场强方向垂直于等势面指向电势降低的方向。 举一反三
【变式一】匀强电场中有A、B、C三点构成三角形,边长均为4 cm。将一带电荷量q=1.0×10-10 C的正电荷(不计重力),从A点移到C点,电场力做功为,若把同一电荷从A点移到B点,电场力做功为,那么该电场的场强是多大?
解析:由题意,把正电荷从电场中的A点分别移到C点或B点,电场力做的功相同,根据W=qU可知,B、C两点电势相同,在同一等势面上。由于电场中的等势面与电场线垂直,可见A点与BC等势面在场强方向的距
离
A、B两点的电势差
该电场的电场强度
。
答案:5×102 V / m
【变式二】(2011山东卷)如图所示,在两等量异种点电荷的电场中,MN为两电荷连线的中垂线,a、b、c三点所在直线平行于两电荷的连线,,且a与c关于MN对称,b点位于MN上,d点位于两电荷的连线上。以下判断正确的是
A.b点场强大于d点场强
B.B点场强小于d点场强
C.a、b两点的电势差等于b、c两点间的电势差
D.试探电荷+q在a点的电势能小于在c点的电势能
解析:根据等量异种点电荷的电场的分布特点和叠加原理可知A错误,B正确;因为a、 b、c三点所在直线平行于两电荷的连线,且a与c关于MN对称,a、b两点的电势差等于b、c两点间的电势差,C正确;根据等量异种点电荷的电场的分布特点,a点的电势高于c点的电势,所以试探电荷+q在a点的电势能大于在c点的电势能,D错误。
答案:BC
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
富港检测技术(东莞)有限公司_
2024-04-15 广告
2024-04-15 广告
低气压试验是确定产品在低气压气候环境下储存、运输、使用的适用性,试验严酷程度取决于试验的温度、气压和时间;ISTA-3A中低气压振动试验的气压要求为:卡车运输绝对气压为70kPa(等效海拔高度约为3000m),飞机运输绝对气压为60kPa(...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询